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A B S T R A C T

The complicated interplay of clinical, demographic, and procedural factors makes it difficult to predict the 
success of in vitro fertilization (IVF), a commonly used assisted reproductive technology. The goal of this 
research was to create an artificial intelligence (AI) pipeline that could predict live birth outcomes in IVF 
treatments with high accuracy.
Design: We evaluated prediction performance by integrating different feature selection methods, such as principal 
component analysis (PCA) and particle swarm optimization (PSO), with different machine learning-based clas-
sifiers, including random forest (RF) and decision tree, as well as deep learning-based classifiers, including a 
custom transformer-based model and a Tab_transformer model with an attention mechanism. Additionally, this 
study analyzes confounding factors like patient age and previous IVF cycles and explores the influence of 
different perturbation and preprocessing techniques and validates the model’s robustness under varied scenarios. 
In addition, Shapley Additive Explanations (SHAP) analysis was performed to enhance interpretability of 
methods.
Results: This research demonstrated that the best performance was achieved by combining PSO for feature se-
lection with the Tab_transformer-based deep learning model, yielding an accuracy of 97 % and an AUC of 98.4 %, 
highlighting its significant performance in prediction live births. By identifying the most significant predictors of 
infertility and guaranteeing clinical significance, SHAP analysis significantly improved interpretability.
Conclusion: With the accuracy and interpretability, this study develops a strong AI pipeline for predicting live 
birth outcomes in IVF. This study establishes a highly accurate AI pipeline for predicting live birth outcomes in 
IVF, demonstrating its potential to enhance personalized fertility treatments.

1. Introduction

Assisted reproductive technologies (ART), particularly in vitro 
fertilization (IVF), have transformed the landscape of infertility treat-
ment, offering hope to millions of couples worldwide [1]. Despite ad-
vancements in embryology and clinical practices, achieving consistent 
success in IVF remains a significant challenge [2]. Key results, like 

whether an embryo implants successfully and leads to a live birth, rely 
on many different factors; the complexity of IVF results comes from the 
need for many things to work together for the treatment to succeed [3,
4]. This includes patient age, hormonal profiles, clinical protocols, 
embryological characteristics, and even lifestyle or genetic factors, all of 
which contribute to the complexities that surround the process [5]. Each 
of these variables influences treatment success, making it challenging to 
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predict outcomes and optimize protocols. As illustrated in Fig. 1, the IVF 
process involves key stages, each contributing to these outcomes, from 
patient evaluation and ovarian stimulation to embryo selection and 
transfer. Traditional methods for embryo selection and live birth pre-
diction are often unable to integrate and analyze these multidimensional 
data aspects effectively, as they primarily rely on static morphological 
grading systems, while foundational, are often subjective and limited in 
their ability to capture the complex dynamics of embryonic develop-
ment and live birth outcomes [3].

Recent advancements in machine learning and artificial intelligence 
(AI) have introduced a paradigm shift in IVF, providing tools to analyze 
vast and complex datasets with unprecedented precision [4]. AI and ML 
have revolutionized IVF by automating embryo evaluation, predicting 
implantation potential, and enhancing live birth outcomes [5]. These 
technologies address many of the limitations of traditional methods, 
offering unprecedented precision, consistency, and scalability. They 
enable the analysis of large and complex datasets, offering predictive 
insights that surpass the capabilities of traditional statistical models [6].

One of the most promising applications of AI in IVF is embryo se-
lection, where AI can predict the likelihood of a live birth for individual 
embryos [7]. Deep learning models, especially convolutional neural 
networks (CNNs), have shown success in automating embryo grading by 
analyzing time-lapse imaging data [8]. This technology helps identify 
embryos with a higher probability of resulting in a live birth, enhancing 
decision-making during the IVF process. Annotation-free scoring sys-
tems, such as those described by Ueno et al. [8], have further stream-
lined the embryo evaluation process by eliminating the need for 
extensive manual input while maintaining high predictive accuracy. 
These models analyze morphogenetic parameters, such as pronuclear 
fading, cleavage patterns, and blastulation timing, giving researchers 
dynamic perspectives on embryo development that were previously 
unattainable through static morphological assessments [9].

Beyond embryo grading, AI has been employed to predict implan-
tation potential with notable success. Machine learning methods, like 
random forests and ensemble models, use information about embryo 
development and patient details to evaluate the chances of implantation. 
Research by Bamford et al. [10] and Uyar et al. [11] have demonstrated 
the ability of these models to achieve area under the curve (AUC) values 
exceeding 0.75 for implantation prediction. Furthermore, reinforcement 

learning-based systems like Dyn Score could dynamically update pre-
dictions in real time, offering clinicians actionable insights into embryo 
viability [12]. These adaptive models represent a significant step for-
ward in IVF decision-making, allowing for more personalized and pre-
cise treatment strategies.

The goal of IVF is to achieve a live birth, making the prediction of live 
birth outcomes a critical focus of AI research [2]. AI models, which 
integrate patient demographics, clinical data, and simple quantitative 
features from imaging modalities, have shown promise in this domain. 
For instance, studies by Huang et al. [13] and Jiang et al. [14] utilized 
voting ensembles of CNNs to predict embryo ploidy, resulting in im-
provements in live birth rates. These models enable clinicians to opti-
mize treatment protocols and maximize the likelihood of success.

Researchers have also proposed feature selection techniques to 
create efficient AI-based methods that support the IVF process. Kragh 
et al. [15]. explored distinctions between ranking embryos based on 
implantation potential and predicting probabilities of implantation 
success, as well as issues like dataset balancing, selection bias, and 
clinical applicability. By focusing on the most relevant features, these 
methods enhance model interpretability and reduce computational 
complexity without compromising performance. Studies by Ueno et al. 
[8] and Bamford et al. [10] highlighted the importance of feature se-
lection in improving the efficiency and accuracy of IVF-based predictive 
models.

Several studies proposed promising AI methods for classifying live 
birth success as a binary outcome (success/failure). For example, Zhang 
et al. [16], utilizing 57,558 HFEA records, machine learning models 
such as artificial neural networks (ANN) and LogitBoost to predict live 
birth outcomes for natural-cycle IVF, with an AUC of approximately 
0.79. Their method’s ability to capture intricate feature interactions was 
limited, though, by the absence of sophisticated deep learning archi-
tectures like Transformer models. McLernon et al. [17]. applied a 
discrete-time logistic regression model, while Jones et al. [18] also 
utilized logistic regression. Sanders et al. [19] conducted a comparison 
of live birth rates using binary logistic regression. Raful Hassan et al. 
[20] used a hill-climbing wrapper algorithm for feature selection. 
Milewski et al. [21] employed the SIMBAF algorithm, a margin-based 
feature selection method that enhances classification performance. 
Finally, different approaches achieved an accuracy between 0.73 and 

Fig. 1. Step-by-step process of in vitro fertilization (IVF).
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0.96.
Despite the promising results achieved so far, the prediction of live 

birth outcomes using AI has not yet been integrated into clinical prac-
tice, meaning that it requires further innovation and development of 
more robust approaches in this area. Most prior relevant research on live 
birth prediction has primarily relied on traditional AI models, often 
overlooking the performance enhancements that advanced deep 
learning methodologies could offer [15–20]. Leveraging these 
cutting-edge deep learning techniques has the potential to refine pre-
dictive accuracy and enable more reliable, data-driven decision-making 
in clinical settings.

Our work tries to enhance previous works on live birth prediction by 
presenting a novel, integrated optimization and deep learning pipeline 
designed to predict live birth success in IVF with greater accuracy. This 
pipeline smoothly brings together Particle Swarm Optimization (PSO), a 
method used to choose important features, with a sophisticated deep 
learning model based on Tab_transformer, creating a new and effective 
way to handle the complicated data from IVF. While PSO has been 
widely utilized in other fields for optimizing feature subsets, its potential 
in IVF prediction tasks remains largely untapped. By incorporating PSO, 
the pipeline identifies the most influential features, streamlining the 
model and enhancing its interpretability. Simultaneously, transformers, 
originally developed for natural language processing, are adapted to 
capture intricate interactions between clinical and demographic vari-
ables, demonstrating superior predictive capabilities compared to 
traditional machine learning models. The use of transformer models for 
IVF prediction tasks, including live birth prediction, remains an unex-
plored area of research. This study shows a combination of PSO, and 
transformers provides a robust framework with significant performance 
for advancing IVF live birth prediction. We validated the proposed 
method using the open access dataset 2010–2018 HFEA. Additionally, 
this study used perturbation techniques (noise addition, outlier removal, 
and synthetic minority over sampling technique (SMOTE) to evaluate 
robustness, employed SHAP analysis for interpretability, and examined 
confounding variables such as patient age and prior IVF cycles to ensure 
accurate and bias-free predictions.

Fig. 1 shows the IVF procedure, starting with patient assessment for 
appropriateness and donor egg utilization. After hormone-stimulated 
ovarian stimulation, ultrasound-guided aspiration retrieves several 
eggs. The eggs are fertilized in the lab, then embryo selection selects the 
healthiest embryos for transfer [7]. Lastly, the uterus receives the 
selected embryos for successful implantation and a live birth. It shows 
the precision and complexity of assisted reproductive technology.

2. Methodology

2.1. General experimental design

In this work, we have applied inclusion and exclusion criteria to 
enhance the quality and relevance of the data, ensuring it was appro-
priate for our binary classification task. To reduce the dimensionality of 
the dataset and improve model performance, we utilized two feature 
selection and reduction techniques: Principal Component Analysis 
(PCA) and PSO. For classification, we evaluated the performance of four 
different classifiers: Random Forest (RF), Decision Tree (DT), a 
transformer-based model, and a Tab_transformer-based model. Finally, 
we designed different experimental setups: the first used PCA features as 
input to all classifiers (Method 1 and Method 3, Fig. 2), and the second 
used features provided by PSO as input to all these classifiers (Method 2 
and Method 4, Fig. 2). In total, we have eight classification models 
including, PCA+RF, PCA+Decision Tree, PSO+RF, PSO+Decision Tree, 
PCA+Transformer-based model, PCA+ Tab_transformer-based model, 
PSO+Transformer based model, and PSO+Tab_transformer-based 
model.

2.1.1. The dataset used
For this study, we utilized the Human Fertilization and Embryology 

Authority (HFEA) dataset, an anonymized registry dataset that encom-
passes fertility treatments conducted from 2010 to 2018. Designed to 
enhance patient care and maintain strict confidentiality for patients, 
donors, and offspring, this dataset stands as one of the most compre-
hensive and longest-running repositories of fertility treatment records 
globally. With 665,244 patient records and an initial set of 94 features, it 
provides a detailed account of fertility treatment cycles, covering patient 
demographics, treatment protocols, and infertility causes. These attri-
butes present a comprehensive view of the factors influencing IVF out-
comes during this period. The dataset includes both numerical and 
categorical variables, capturing a broad spectrum of critical factors. Key 
features encompass patient-specific details such as age at the time of 
treatment, number of prior IVF pregnancies, live birth outcomes, and 
specific infertility causes (e.g., tubal disease, ovulatory disorders, or 
male infertility factors). Additionally, we have meticulously recorded 
procedural details such as the type of eggs and sperm used (e.g., fresh, 
frozen, donor, or patient-derived), the number of eggs collected, and the 
number of embryos transferred. This level of granularity allows for an 
in-depth analysis of the variables affecting IVF success rates. This study 
assesses the prediction performance of live birth success as a binary 
outcome (success/failure).

To evaluate the generalizability of the proposed model, we tested its 
performance on an external temporal HFEA dataset from 2005 to 2009. 
Currently, there are no publicly available patient-level datasets that 
match the clinical and embryological depth of the HFEA registry. Well- 
known external resources, such as the CDC’s NASS dataset, provide only 
clinic-level aggregate statistics and lack individual-level outcome and 
feature data required for machine learning–based prediction1 (Similarly, 
datasets like OPTIMIST (Netherlands) and eIVF (USA) are not openly 
accessible and require formal data access requests or institutional col-
laborations. Therefore, we used a temporal split within the HFEA dataset 
to simulate out-of-sample generalization. While our original model was 
trained on data from 2010 to 2018, we additionally evaluated the per-
formance of the proposed methods on earlier data from 2005 to 2009, 
which reflects temporally distinct clinical practice patterns.We note that 
the HFEA registry is inherently multi-center, as it includes data from all 
licensed fertility clinics across the United Kingdom. As mandated by UK 
regulationsall fertility clinics are required to submit treatment records to 
the HFEA, ensuring broad geographic, institutional, and clinical di-
versity within both training and validation cohorts.2 As an additional 
evaluation, we also train and test our proposed models using the dataset 
from the same time period selected by Sadeghzadeh et al. [33] (train on 
dataset from 2010–2016 and test on dataset from 2017–2018), which 
represents the closest benchmark and demonstrates superior perfor-
mance compared to earlier studies (see Table 15).

2.2. Data preprocessing pipeline for IVF data analysis

The preprocessing pipeline transformed raw IVF data (Section 2.1.1) 
into a clean and structured format for the AI pipeline’s input. It began 
with column standardization, ensuring uniformity by converting names 
to lowercase and removing whitespace. We structurally aligned the 
datasets by reindexing and adding missing columns and then consoli-
dated them into a single Data Frame for holistic analysis. We removed 
columns with <1 % non-null values to enhance data quality. We 
imputed missing values based on the data type. Finally, we numerically 
encoded categorical features and normalized numerical features to a [0, 
1] range (Fig. 2). we used scikit-learn’s train_test_split function to divide 

1 https://data.cdc.gov/Assisted-Reproductive-Technology-ART-/2022-Fina 
l-Assisted-Reproductive-Technology-ART-Su/cchw-gdwa/about_data

2 https://ukhealthdata.org/members/human-fertilisation-and-embryology-a 
uthorit
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the dataset into three subsets: training (70 %), validation (15 %), and 
testing (15 %). This partitioning occurred prior to feature selection and 
model training. While the dataset lacks patient-level identifiers, we 
ensured that no samples were duplicated across splits. Each treatment 
cycle was associated with a unique patient ID, ensuring that no patient’s 
records appeared more than one-fold during cross-validation. This 
approach effectively prevented patient-level data leakage between 
training and test sets.

2.3. Inclusion and exclusion criteria

Inclusion and exclusion criteria were defined to ensure a clean, 
complete, and relevant dataset for this study. These criteria were chosen 
based on the groundwork laid by Sadegh-Zadeh et al. [21], who used the 
same dataset and adhered to a set of inclusion and exclusion criteria 
conditions for data preparation and analysis. The dataset included 
people who met these conditions: (1) they had valid information for the 
target variable, "live birth occurrence"; (2) they reported at least one 
infertility-related cause, like "ovulatory disorder"; and (3) their cycle 
history showed they had not had negative records of previous treatment 
cycles. These criteria ensured the inclusion of relevant cases with suf-
ficient data for analysis. We applied these inclusion criteria and then 
implemented exclusion criteria to improve the quality of the data. We 
excluded subjects with missing information for "elective single embryo 
transfer", as this variable was crucial for the analysis. Additionally, we 
removed entries with logical inconsistencies, such as negative treatment 
cycles or conflicting treatment-related dates, to ensure data validity. By 
adopting these inclusion and exclusion criteria, this study ensured a 
high-quality dataset suitable for robust predictive modeling of IVF live 
birth outcomes. The number of subjects included in this study after 
exclusion criteria is 115,012.

2.3.1. Feature selection using particle swarm optimization (PSO)
Feature selection reduces the number of predictors and focuses on 

the most relevant ones [22]. In this study we have employed PSO as a 

feature selection method due to its efficient search for optimal solutions 
in large and complex spaces [23]. PSO is a nature-inspired optimization 
technique, modeled after the social behavior of bird flocking or fish 
schooling. Each individual component, called a "particle," represents a 
candidate for a solution in the search space. These particles move 
through space by adjusting their positions based on their experiences 
and those of neighboring particles, mimicking how animals in groups 
share information to find food or navigate environments [20]. PSO 
works well for tackling complicated optimization problems, like 
choosing the best features, because it can quickly search through the 
large number of possible feature combinations. This study employs PSO 
to pinpoint the ideal feature subset for forecasting the success of live 
births. Each particle encoded a subset of features as a binary vector, 
where 1 indicated inclusion of a feature and 0 indicated exclusion of a 
feature.

Cost Function
The cost function in PSO evaluates the quality of each particle’s so-

lution (Eq. (1)). In this study, the cost function is defined as below: 

C = − (F1 − P⋅N) (1) 

Where C is the cost function value to be minimized by PSO, F1 is the 
F1-score of a logistic regression model trained on the selected features. 
We chose logistic regression as the surrogate model in the PSO fitness 
function because it is computationally efficient and robust in feature 
selection tasks. PSO necessitates evaluating the fitness of numerous 
feature subsets over hundreds of iterations, and using the final classifier 
for each evaluation would result in computational burden, especially 
given the model’s complexity and training time. In contrast, logistic 
regression trains quickly and allows for the practical execution of the 
optimization process. when we use small feature subsets, logistic 
regression typically produces less variance across folds and is less prone 
to overfitting than high-capacity models, especially during the inter-
mediate stages of feature selection[24]. This makes it a reliable esti-
mator of generalizable performafnce, allowing PSO to prioritize feature 
sets that provide broad information rather than overfitting the training 

Fig. 2. Overview of preprocessing steps and classification methods used in this paper.
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data.
The F1 score balances precision and recall, making it suitable for 

imbalanced datasets like IVF outcomes. P is the penalty weight, a 
parameter controlling the trade-off between model performance and 
simplicity. N is the number of features selected by the particle. The goal 
of PSO is to minimize C, which indirectly maximizes the F1 score while 
penalizing larger feature subsets. This process ensures the final feature 
set is both performant and understandable. The following steps outline 
how to select features using PSO:

Algorithm 1

2.3.2. Dimensionality reduction with principal component analysis (PCA)
Principal Component Analysis (PCA) is a statistical technique used to 

reduce the dimensionality of a dataset while retaining as much infor-
mation as possible [24]. It does this by transforming the original data 
into a new set of orthogonal components, called principal components, 
which are ranked according to their ability to capture the variance 
within the data. In this study, we have applied PCA to the IVF dataset to 
reduce its dimensionality while retaining 95 % of the data’s variance. 
This process can remove irrelevant variations and reduce computational 
complexity.

2.3.3. Random forest
Random Forest (RF) is an ensemble learning method that combines 

the outputs of multiple decision trees to improve predictive performance 
and reduce overfitting [25]. RF naturally evaluates feature importance 
by measuring the impact of each feature on prediction quality [26]. In 
this study, we have utilized an RF with 200 decision trees as estimators, 
each with a maximum depth of 10. Note that we restrict the depth of 
each tree to avoid overfitting and maintain interpretability. Moreover, 

the criterion=’gini’ used Gini impurity to evaluate split quality, ran-
dom_state: 42, class_weight: ’balanced’, min_samples_split: default, 
min_samples_leaf: default, and bootstrap: True.

2.3.4. Decision tree
A decision tree is a supervised learning algorithm used for classifi-

cation and regression tasks [27]. It recursively splits the data into sub-
sets based on feature thresholds, forming a tree-like structure where 
each internal node represents a decision based on a feature, and each 
leaf node represents an output prediction. Decision trees are highly 
interpreted, as they clearly outline the decision-making process, making 
them particularly useful for understanding feature importance and 
validating selected features. In this study, we used the feature-extracted 
PCA and fed it into the decision tree with the following parameters: 
max_depth=10, limited depth to maintain simplicity, criterion=gini, 
splitter: ’best’, random_state: 42, min_samples_split: default, and min_-
samples_leaf: default.

2.3.5. Transformer-based model
A deep learning model based on the transformer architecture, known 

as a transformer-based model for classification, can solve classification 
tasks [28]. Vaswani et al. originally introduced transformer architecture 
in the "Attention Is All You Need" paper [29], and it has since become the 
foundation of many state-of-the-art models in natural language pro-
cessing (NLP), computer vision, and other fields. The attention mecha-
nism is a critical component of the transformer-based model, designed to 
analyze and interpret tabular data to predict IVF success. The attention 
mechanism enables the model to dynamically assign importance to 
specific features, capturing complex interactions among them and 
improving the model’s decision-making process. In this work, the 

Algorithm 1 
Pseudo code for the feature selection using PSO.

Inputs:
- Dataset with features: F
- Cost function: -(F1_score-P. N)
- Parameters: swarm size S = 20, Maximum iterations T = 1000, Inertia weight w = 0.7, Cognitive coefficient c1= 1.5, social coefficient c2 = 2, penalty factor P

Outputs:
- Optimal feature subset Foptimal

- Best fitness value Cbest
Procedure:

Initialization:
For each particle i = 1 to S:
a. Initialize binary position vector xi ϵ{0, 1}n

b. Initialize velocity viϵRn

c. Compute number of selected features: N =
∑n

j
xij

d. Evaluate fitness: Ci = -(F1_ scorei - P. N)
e. Set the personal best: pbesti = xi , Cp− besti = Ci

End for
Set the global best: gbest = arg minS

i=1 Ci , Cg− best = mini (Ci )

Optimization:
For iteration t= 1 to T:

For each particle i = 1 to S:
For each dimension (feature) jε1 to n :

a. Generate random numbers r1, r2 ∼
⋃
(0,1)

b. Update the velocity:
vij = w. vij + c1. r1.

(
p bestij − xij

)
+ c2 . r2.

(
g bestj − xi j

)

c. Update position using a sigmoid transfer:

s(vij )=
1

1 + e− vij 
, xi j = {

1, if s
(
vij
)
> rand (0, 1)

0, otherwise
End for
Compute N =

∑n
j=1

xij

Evaluate fitness: Ci = − (F1 scorei − P.N)

If Ci < Cp besti : Update p besti = xi , Cp besti = Ci

End for
Update the global best:

If Ci < Cg besti : Update gbest = xi , Cbest = Ci

End for
Return:

Foptimal = gbest, Cbest = Cgbest
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dataset includes features such as patient age, sperm quality, number of 
embryos transferred, and other clinical parameters. These features often 
interact in complex ways. The attention mechanism dynamically de-
termines which features are most important for predicting IVF success 
and adjusts their importance based on the context of the input data for 
each individual case. For instance, the attention mechanism may pri-
oritize features such as the quality of embryos for older patients. 
Younger patients may receive more emphasis on features like the 
number of eggs retrieved.

The attention mechanism in this transformer-based model operates 
in the following steps:

Step 1: Input transformation
The input data is composed of tabular features, which are referred to 

as input_dim features after feature selection. We treat each feature as a 
component of the input vector. To make the features suitable for 
attention computation, we first project them into a higher-dimensional 
space using a dense layer. 

X = Dense(x) (2) 

After this, a sequence dimension is added to simulate sequential 
processing.

Step 2: Scaled dot-product attention
The scaled dot-product attention mechanism computes the re-

lationships between features: 

Attention (Q, K,V) = softmax

(
QkT
̅̅̅̅̅
dk

√

)

v (3) 

Where Query (Q) represents the feature being queried, key (K) rep-
resents the importance of each feature relative to the query, and value 
(V) contains the actual feature data.

Each feature attends to all other features, producing a matrix of 
attention scores that capture dependencies between them. The softmax 
function ensures that the attention scores sum to 1, creating a proba-
bilistic weight for each feature.

Step 3: Multi-head attention
This work employs multi-head attention, dividing the input into 

multiple "heads." Each head learns to focus on different types of re-
lationships. For instance, one individual might concentrate on the cor-
relations between patient age and success. Another head might 
emphasize sperm quality or treatment type. We have concatenated and 
transformed the outputs from all heads into a single vector, combining 
multiple perspectives.

Step 4: Residual connection and layer normalization
The input is added back to the attention output: 

x = Add(x,AttentionOutput) (4) 

Layer normalization: The output is normalized to stabilize gradi-
ents and ensure smooth learning.

The attention mechanism powers the Transformer model, offering a 
sophisticated approach to tabular data analysis for IVF success predic-
tion. The architecture of this transformer-based model proposed in this 
study is explained in Table 1.

This work configures the transformer model with selected hyper-
parameters to optimize its performance on IVF success prediction. The 
number of selected features from PSO determines the input dimension 
(input_dim), representing the length of the reduced feature set (38 fea-
tures). We set the number of attention heads (num_heads) to 4, which 
enables the model to learn diverse relationships between features 
through parallel attention mechanisms. The feed-forward network 
dimension (ff_dim) is 128, providing a hidden layer size that refines 
feature representations after attention. The model includes two trans-
former encoder layers (num_layers), each consisting of a multi-head 
attention block and a feed-forward network enabling hierarchical 
feature extraction.

The model applies to a dropout rate (dropout_rate) of 0.3 and L2 

regularization (l2_reg) with a strength of 1e− 4 to prevent overfitting. We 
set the batch size (batch_size) to 2048 during training to ensure efficient 
utilization of computational resources, and we set the learning rate 
(learning_rate) to a low value 1e− 6 to ensure stable and gradual 
convergence. The binary crossentropy loss function optimizes the model 
for binary classification tasks, monitoring performance metrics such as 
accuracy and AUC throughout the training process. The model limits 
training to a maximum of 40 epochs and implements an early stopping 
patience of 2 epochs to halt learning if the validation loss does not 
improve, thereby preventing overfitting. These hyperparameters 
collectively ensure the model’s ability to generalize well while capturing 
complex relationships within the IVF dataset. We have provided all these 
hyperparameter values using the grid search method. Table 2 displays 
all these hyperparameters and their corresponding values.

2.3.6. Tab_transformer-based model
The Tab_transformer model is a deep learning approach that com-

bines structured datasets with a mix of categorical and numerical fea-
tures [30]. The Tab_transformer uses self-attention mechanisms to 
capture dependencies between features, particularly among categorical 
features. Instead of representing categorical data using traditional 
encoding methods, it maps each category to a learned embedding vec-
tor. These embeddings allow the model to capture semantic relation-
ships between categories. The architecture starts by converting 
categorical features into embeddings and merging them with numerical 
features, either directly or via normalization layers. Transformer layers 
receive these inputs and use self-attention mechanisms to model the 
interactions between features. By doing so, the model identifies complex 
relationships between features that may be critical for the task, such as 
correlations between specific categories or numerical ranges. Table 3
summarizes the detailed architecture of the proposed Tab_transformer 

Table 1 
The architecture of the proposed transformer-based classification model for 
predicting live birth success in IVF.

Layer Output Shape Explanation

Input Layer (batch_size, 38) Raw input features (38 selected 
features).

Dense Layer (batch_size, 
128)

Projects feature into 128 dimensions.

Sequence Expansion (batch_size, 1, 
128)

Adds a sequence dimension for 
Transformer processing.

Multi-Head 
Attention

(batch_size, 1, 
128)

Learning relationships between features 
with 4 attention heads.

Residual +
Normalization

(batch_size, 1, 
128)

Preserves input information and 
normalizes activations.

Feed-Forward 
Network

(batch_size, 1, 
128)

Further processes feature 
representations.

Residual +
Normalization

(batch_size, 1, 
128)

Adds stability and preserves the input.

Global Average 
Pooling

(batch_size, 
128)

Aggregates the sequence into a single 
feature vector.

Dense (Output 
Layer)

(batch_size, 1) Outputs a probability for the binary 
classification task.

Table 2 
The information of all parameters used for transformer model in this study.

Parameter Name Value

Input Dimension (input_dim) 38 features
Number of Heads (num_heads) 4
Feed-Forward Dimension (ff_dim) 128
Number of Layers (num_layers) 2
Dropout Rate (dropout_rate) 0.3
L2 Regularization (l2_reg) 1e− 4

Batch Size (batch_size) 2048
Learning Rate (learning_rate) 1e− 6

Loss Function Binary_crossentropy
Number of epochs 40
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model in this study.
Here, like the transformer-based model proposed in Section 2.3.5, 

the attention mechanism plays a crucial role in learning complex re-
lationships between the input features. It works by dynamically focusing 
on different parts of the feature set, which helps the model capture in-
teractions between both numerical and categorical features. The multi- 
head attention mechanism is particularly powerful in this case because it 
allows the model to simultaneously attend to multiple aspects of the 
input data, learning different relationships in parallel.

The attention mechanism operates by computing attention scores 
that determine how much weight each feature should have in relation to 

others. Each feature is transformed into a query, key, and value, and the 
attention mechanism compares the query to all keys to compute a score. 
This score decides how much attention should be given to the corre-
sponding value. By applying multi-head attention, the model can learn 
different types of relationships across features simultaneously. For 
instance, one head may focus on the interaction between numerical 
features, while another head could focus on categorical feature in-
teractions. Fig. 3 illustrates all the steps in the proposed Tab_transformer 
model in detail.

In the Tab_transformer architecture, various parameters define the 
model’s structure and behavior. The model uses ReLU activation for the 

Table 3 
The architecture of the proposed Tab_transformer-based classification model for predicting live birth success in IVF.

Layer Input Shape Output Shape Description

Numerical Input Layer (batch_size, num_numerical) (batch_size, num_numerical) Input layer for scaled numerical features.
Categorical Input Layer (batch_size, 1) (per feature) (batch_size, embedding_dim) Embedding layers convert categorical indices into dense vector representations.
Concatenation Layer Combined inputs (batch_size, total_dim) Numerical features and categorical embeddings are concatenated.
Reshape Layer (batch_size, total_dim) (batch_size, 1, total_dim) Reshapes the input for attention layers.
Multi-Head Attention (batch_size, 1, total_dim) (batch_size, 1, total_dim) Self-attention layer captures feature dependencies and relationships.
Layer Normalization (batch_size, 1, total_dim) (batch_size, 1, total_dim) Normalizes outputs from the attention mechanism for stable learning.
Dense Layer (ReLU) (batch_size, 1, total_dim) (batch_size, 1, 128) Fully connected dense layer with ReLU activation to learn higher-level patterns.
Output Layer (batch_size, 1, 128) (batch_size, 1) Sigmoid activation outputs probability for binary classification.

Fig. 3. Overview of the proposed Tab_transformer model.
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feedforward layers to introduce non-linearity. In the output layer, the 
activation function is sigmoid for binary classification tasks and softmax 
for multi-class classification tasks. During training, we employed the 
Adam optimizer with a learning rate of 0.0000001. The input shape for 
the numerical features is (batch_size, input_dim), where input_dim cor-
responds to the number of numerical features selected from the dataset. 
For categorical features, we encode each categorical feature as an 
integer index before passing it through the embedding layers, resulting 
in an input shape of (batch_size, 1) for each categorical column.

The multi-head attention mechanism has four attention heads. This 
functionality allows the model to focus on multiple aspects of the data 
simultaneously, learning complex feature relationships. The feed- 
forward layers, which process the output of the attention mechanism, 
set the feed-forward dimension (ff_dim) to 128 units. The model consists 
of 1 layer of multi-head attention followed by feed-forward layers, with 
a dropout rate set to 0.2 to help prevent overfitting during training. To 
further reduce overfitting, we apply L2 regularization with a regulari-
zation strength of 0.01 to the weights in the feed-forward layers. To fine- 
tune the model, we set the batch size during training to 512 and the 
learning rate for the Adam optimizer to an extremely low value of 
0.0000001. For binary classification tasks, we use binary cross-entropy 
as the loss function for training, while we typically use categorical cross- 
entropy for multi-class classification problems. The optimizer trains the 
model for 40 epochs, iteratively adjusting the weights to minimize the 
loss. For binary classification tasks, binary cross-entropy is used as the 
loss function. Table 4 summarizes the parameters, and their corre-
sponding values used for the proposed Tab_transformer model.

Hyperparameter tuning was performed exclusively within the 
training folds using nested cross-validation. A separate grid search was 
conducted for each outer fold without referencing the test data. 
Furthermore, early stopping was employed based on validation loss 
during inner training, further safeguarding against overfitting. These 
steps collectively ensured a rigorous and fair evaluation of model 
performance.

2.4. Analyzing confounding factors in the modeling process

This study analyzed confounding factors, such as patient age at 
treatment and the number of previous IVF cycles, to evaluate their 

impact on model performance for the best-performing AI model. Patient 
ages are categorized into five subgroups across different age brackets: 
18–25, 26–30, 31–35, 36–40, and 41–45 years. Similarly, the number of 
previous IVF cycles is divided into five categories (0, 1, 2, 3, and 4+
cycles), and computed metrics are used to assess the adaptability of the 
model for each category. A robust validation framework is employed to 
further validate the model’s reliability. This framework included various 
experimental scenarios: (1) a baseline condition using the original 
dataset and (2) outlier removal by excluding extreme values for factors 
such as "Patient Age at Treatment" and "Previous IVF Cycles." The 
SMOTE algorithm was used to even out the data, which fixed the 
problem of class imbalance. Gaussian noise was added to simulate real- 
world variation, with situations ranging from moderate noise (σ=0.05) 
to high noise (σ=0.15). Additionally, an explainable AI technique, 
SHAP, is utilized to enhance model interpretability by quantifying the 
contribution of each feature to predictions and offering information 
about the importance of key factors in the decision-making process.

2.5. Explainable AI through SHAP: feature importance and clinical 
alignment

The SHAP method was chosen because it has a strong theoretical 
base in cooperative game theory. This advantage makes it an important 
tool for making complex machine learning models understandable both 
globally and locally. The SHAP approach was chosen because of its solid 
mathematical underpinnings in cooperative attribution modeling [30]. 
Assigning a Shapley value to each feature, which measures its contri-
bution to individual predictions, improves the interpretability of the 
model. To ensure that importance scores are distributed fairly among all 
inputs, SHAP calculates these values by methodically comparing model 
outputs with and without each feature. Both local interpretability 
(explaining specific predictions) and global interpretability (identifying 
the most important features throughout the dataset) are made possible 
by this method. By ranking feature importance, SHAP helps make AI 
predictions clearer and aligns them with clinical reasoning by showing 
the key factors that affect model decisions [31].

2.6. Robustness assessment

To account for the real-world variability in IVF data, a systematic 
preprocessing strategy was implemented to guarantee model reliability 
and robustness. This strategy included Gaussian noise addition, outlier 
removal, and class balancing. The interquartile range (IQR) method was 
employed to identify and eliminate extreme values. Patients who were 
either younger than 18 or older than 45 were excluded, as they are 
outside the typical range of IVF treatment. Furthermore, the rarity of 
cases with >15 IVF cycles may have distorted the model’s performance, 
leading to their exclusion. We implemented SMOTE to balance class 
distributions and ensure more equitable model training. Lastly, to test 
how well the model works when faced with real-world changes in data, 
two types of Gaussian noise were added: a moderate noise (σ = 0.05) to 
mimic small changes in clinical data and a high noise (σ = 0.15) to see 
how the model performs with larger changes. Table 5 summarizes the 
preprocessing steps and their corresponding experimental conditions.

To clarify, Gaussian noise was added exclusively to the training data, 
not to the validation or test sets. This decision was made to prevent data 
leakage and ensure the integrity of model evaluation. The rationale for 
selecting σ = 0.05 and σ = 0.15 was twofold:1) Clinical Realism: These 
values simulate realistic clinical variability and minor input inaccuracies 
in features such as patient age at treatment and Previous IVF Cycles. For 
example, slight variations in reported patient age or cycle counts may 
occur due to rounding, reporting delays, or data entry inconsistencies. 
Based observed data distributions, σ = 0.05 represents a moderate level 
of clinical uncertainty, while σ = 0.15 simulates more extreme cases, 
such as recording errors or borderline patient eligibility. 2) Robustness 
Testing: To check how strong our model is, we used these two levels of 

Table 4 
The information of all key parameters used for the proposed Tab_transformer- 
based model and their respective values used in this study.

Parameter Value

Activation Function 
(Feedforward)

ReLU

Activation Function 
(Output Layer)

Sigmoid (binary), Softmax (multi-class)

Optimizer Adam
Learning Rate 0.0000001
Input Shape (Numerical 

Features)
(batch_size, input_dim)

Input Shape (Categorical 
Features)

(batch_size, 1)

Input Dimension 
(input_dim)

Number of selected numerical features

Number of Heads 
(num_heads)

4

Feed-Forward Dimension 
(ff_dim)

128 units

Number of Layers 
(num_layers)

1 layer of multi-head attention + feed-forward layers

Dropout Rate 
(dropout_rate)

0.2

L2 Regularization (l2_reg) 0.01
Batch Size (batch_size) 512
Loss Function Binary cross-entropy (binary classification), 

categorical cross-entropy (multi-class classification)
Number of Epochs 40
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changes to see how it performs in noisier situations. The findings of this 
sensitivity analysis demonstrated that σ = 0.05 resulted in minor mod-
ifications that mirrored mild real-world noise, such as minor variations 
in patient age or number of treatments. A stress-test level of σ = 0.15 was 
used to capture larger perturbations while maintaining significant input 
structure. These two levels, which provide a useful compromise between 
realism and robustness assessment, were chosen as representative 
thresholds for moderate and high noise. Higher values (e.g., σ = 0.20 or 
above) significantly distorted feature distributions and decreased model 
reliability, whereas lower values (e.g., σ = 0.01) had no effect on per-
formance. Thus, we deduced that the best values for evaluating model 
stability under realistic input were σ = 0.05 and σ = 0.15.

These procedures were integrated within a broader preprocessing 
pipeline that also included outlier removal using IQR filtering and 
SMOTE-based class balancing, further enhanced model robustness. All 
modifications were carefully limited to the training data to ensure fair 
and unbiased evaluation.

2.7. Performance evaluation metrics

Computational resources used in this study included an Intel(R) Core 
(TM) i7–10,700 K CPU running at 3.80 GHz, 32 GB of RAM, and an 
NVIDIA GeForce RTX 3080 GPU with 10 GB of VRAM. This hardware 
setup enabled efficient implementation of PSO and the transformer- 
based model, ensuring rapid experimentation and testing. We evalu-
ated our machine learning models using several metrics, each providing 
distinct insights into model performance. These metrics include accu-
racy, precision, recall, and F1-score, which are defined as follows:

Accuracy: Accuracy measures the proportion of correctly predicted 
instances out of the total instances. It is calculated as: 

Accuracy =
TP + TN

TP + FP + FN + TN
(5) 

Where:
TP: True Positives (correctly predicted positive cases)
TN: True Negatives (correctly predicted negative cases)
FP: False Positives (incorrectly predicted positive cases)

FN: False Negatives (incorrectly predicted negative cases)
Precision: Precision quantifies the proportion of correctly predicted 

positive cases out of all predicted positives. It is defined as: 

Precision =
TP

TP + FP
(6) 

Recall: Recall, also known as sensitivity or true positive rate, mea-
sures the proportion of actual positives correctly identified by the model. 
It is calculated as: 

Recall =
TP

TP + FN
(7) 

F1-Score: The F1-score is the means of precision and recall, offering 
a single metric that balances the two. It is calculated as: 

F1 score = 2 ×
precision × recall
precision + recall

(8) 

By employing these evaluation metrics, we obtained a comprehen-
sive understanding of the models’ strengths and weaknesses [32]. For all 
experiments, 10-fold cross-validation was used to reduce overfitting and 
to ensure that the model generalizes well to unseen data, and all re-
ported evaluation metrics represent the average performance across the 
10 cross-validation folds.

3. Results

3.1. Classification results

Table 6 presents the validation results of eight classification models 
(Section 2.1) designed to predict live birth success in IVF. The perfor-
mance of each model is reported by five performance metrics including, 
accuracy, precision, recall, F1-score, and AUC.

Our results show that the PCA+Decision Tree model shows the least 
performance across all five-performance metrics, with the recall value as 
the lowest value, indicating that the model misses some truly positive 
situations. When using the Random Forest (RF) model, especially in 
combination with Particle Swarm Optimization (PSO), performance 
improves in most metrics compared to when the Decision Tree model 
was used. We observed that the combination of both feature selection 
methods, especially the PSO and transformer-based classifiers, out-
performed the classification performance compared with traditional 
machine learning classifiers such as RF and decision tree. The PSO +
Tab_transformer-based model has achieved the best accuracy (97 %), 
precision (95.2 %), recall (96.1 %), F1-score (95.6 %), and AUC (98.4 
%). This model outperformed the other seven models in all performance 
metrics. The visualization of all evaluation results for eight different 
methods compared to each other is shown in Fig. 4.

Fig. 5 shows the attention weight matrix extracted from the trained 
Tab_transformer for a representative test case with a positive outcome 
(live birth success). The matrix shows how the model’s attention heads 
dynamically assigned importance to input features based on contextual 
interactions between them. The darker red squares along the diagonal 
and upper-left part show that the model paid a lot of attention to 
important features like "tubal disease," "fresh transfer," "endometriosis," 
and "partner sperm morphology." Both the attention mechanism and the 
SHAP analysis consistently show that these features are very important, 
confirming their role in predicting successful IVF outcomes. The lower 
portion of the matrix (represented with faded colors and ellipses "…") 
denotes additional features with minimal attention contribution and is 
truncated for clarity in visualization. The color scale reflects the 
magnitude of attention weights, with warmer colors indicating a greater 
influence of one feature over another during the decision process. This 
visualization demonstrates that the Tab_transformer not only identifies 
individual important features but also models complex dependencies 
between them using its attention layers, which goes beyond what linear 
models or SHAP summary plots can capture.

Table 5 
An overview of data preprocessing techniques for noise addition and outlier 
removal.

Action Feature 
Affected

Details Reason

Noise 
Addition

Patient Age 
at 
Treatment

- Gaussian noise added 
with a mean of 0 and:  
• Moderate Noise (σ =
0.05)  
• High Noise (σ =
0.15)

- Simulates slight 
inaccuracies (moderate 
noise) and extreme data 
perturbations (high 
noise).  
- Tests model robustness 
under imperfect data 
conditions.

Previous IVF 
Cycles

- Gaussian noise added 
with a mean of 0 and:  
Moderate Noise (σ =
0.05)   
High Noise (σ = 0.15)

- Mimics variability in 
clinical reporting and 
tests resilience of the 
model predictions.

Outlier 
Removal

Patient Age 
at 
Treatment

- Removed ages below 
18 years or above 45 
years.  
- Values outside the 
interquartile range 
(IQR) were flagged 
and removed.

- Ages below or above the 
typical range for IVF 
treatments are unrealistic 
or non-clinical.

Previous IVF 
Cycles

- Removed cases with 
IVF cycle counts above 
15. 
- IQR-based outliers 
identified and 
removed.

- Extremely high IVF 
cycle counts represent 
rare cases, which could 
skew the training data.
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3.2. Analyzing details of the best performing model

As mentioned in Section 3.1, the best prediction results were ach-
ieved by the PSO + Tab_transformer-based model. The outcome of PSO 
feature selection using this model is a reduced set of 38 features, selected 
based on their relevance to birth prediction and their ability to improve 
model performance. Each feature represents a critical aspect of the IVF 
dataset, categorized into groups such as Infertility Cause, Procedural 
Detail, Patient History, and Outcome. The selected features and their 
explanation are described in Table 7.

The training and validation performance of the Tab_transformer 
model when combined with PSO, our top-performing model in this 
study, is also shown in Fig. 6.

Fig. 6 shows that over 40 epochs, the Tab_transformer model showed 
steady improvements in both training and validation metrics. 
Throughout the training process, both training and validation loss 
decreased gradually and stayed closely aligned, as seen in Fig. 6’s left 
panel. The close tracking between losses effectively minimizes over-
fitting while maintaining strong generalization to unknown data. The 
validation loss by the last epoch was 0.0716, which was very close to the 
training loss of 0.0798. The right panel displays the training and vali-
dation accuracy, demonstrating a steady improvement and convergence 
to >97 % by the end of the epoch. These outcomes show how well the 
Tab_transformer generalizes and how robust its learning ability is.

Table 6 
Performance evaluation of all designed classification models on the (2010–2018) dataset for predicting live birth success in IVF. PCA: Principal Component Analysis, 
PSO: Particle Swarm Optimization, RF: Random Forest.

The number of experiments Classification Method Accuracy Precision Recall F1-Score AUC

1 PCA + RF 90.2 % 91 % 90 % 92.4 % 93
2 PCA + decision tree 89.8 % 88 % 86 % 90.4 % 90
3 PSO + RF 90.5 % 91.9 % 89.6 % 93.8 % 94
4 PSO + decision tree 88.9 % 89 % 90.6 % 93.5 % 93.4
5 PCA + Transformer-based model 92.5 % 92.7 % 92.4 % 94.5 % 95
6 PCA + Tab_transformer-based model 94.1 % 95.2 % 90.1 % 91.3 % 94.7
7 PSO + Transformer-based model 96.3 % 95.7 % 96.4 % 94.8 % 98 %
8 PSO + Tab_transformer-based model 97 % 95.2 % 96.1 % 95.6 % 98.4 %

Fig. 4. Visualization of the binary classification results in this paper for all eight experiments and using five performance metrics including accuracy, precision, 
recall, F1-score and AUC.

Fig. 5. Attention weight matrix for a positive IVF outcome (live birth).
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3.3. Performance evaluation across subgroups

This study looked at the performance of the modeling of different 
groups of patients based on their age and the number of IVF cycles they 
had previously. Table 8 shows how well the model did with people of 
different ages. The groups with the best results were those between the 
ages of 26 and 30 (accuracy: 96.8 %, AUC: 96.9 %) and 31 to 35 (ac-
curacy: 95.8 %, AUC: 96.4 %), which shows how important these 
reproductive times are in a medical sense. The performance went down a 
little for the youngest (18–25) and oldest (41–45) groups, with accuracy 
rates of 94.9 % and 93.5 %, respectively. However, the model kept 
performing well across all age groups, proving its strong performance 
across different subgroups.

Table 9 shows how well different subgroups did based on previous 
IVF cycles. The subgroup with 4+ cycles had the best accuracy (96.6 %) 
and AUC (96.1 %), showing that the model can handle cases with more 
clinical data. Also, the 2-cycle and 3-cycle subgroups did very well, with 
96.5 % and 99.3 % accuracy rates. The 0-cycle subgroup did a little 
worse (accuracy: 93.9 %, AUC: 93.7 %) Overall, while the model per-
formed best for cases with long treatment histories, the model showed 
consistent reliability across all subgroups, proving its performance 
across all subgroups.

3.4. Impact of data preprocessing techniques on model performance

Table 10 assesses the model’s performance under various conditions 
and investigates the effects of outlier removal, data balancing (SMOTE), 
and Gaussian noise addition on critical metrics, including accuracy, 
recall, F1-score, and AUC. These experimental conditions are consistent 
with the data preprocessing steps delineated in Table 5, which involved 
the removal of outliers using the IQR method, the balancing of the data, 
and the introduction of Gaussian noise at varying levels. The negative 
impact of extreme values on model performance was indicated by the 
increase in AUC to 97.5 % and the improvement in accuracy from 96.5 % 
to 97.2 % because of the removal of outliers. The addition of moderate 

Table 7 
Explanation of each of the selected features using PSO.

Feature Name Category Description

Cause of infertility - tubal 
disease

Infertility Cause Indicates whether the patient’s 
infertility is due to tubal disease.

Cause of infertility - 
partner sperm 
immunological factors

Infertility Cause Refers to immunological issues 
with the partner’s sperm that may 
affect fertility.

Cause of infertility - 
partner sperm 
morphology

Infertility Cause Indicates abnormalities in sperm 
shape that may contribute to 
infertility.

Cause of infertility - 
endometriosis

Infertility Cause Indicates whether the patient’s 
infertility is caused by 
endometriosis.

Cause of infertility - female 
factors

Infertility Cause Covers a range of female 
infertility factors not otherwise 
specified.

Cause of infertility - 
ovulatory disorder

Infertility Cause Infertility is due to ovulatory 
disorders in the patient.

Cause of infertility - patient 
unexplained

Infertility Cause Referring to cases where the cause 
of infertility is unknown or 
unexplained.

Date of egg mixing Procedural 
Detail

The date when eggs were mixed 
with sperm during the IVF 
procedure.

Date of embryo thawing Procedural 
Detail

The date when frozen embryos 
were thawed for use in the IVF 
cycle.

Eggs mixed with donor 
sperm

Procedural 
Detail

Indicates whether donor sperm 
was used to mix with eggs during 
the IVF cycle.

Eggs mixed with partner 
sperm

Procedural 
Detail

It indicates whether the partner’s 
sperm was used to mix with eggs 
during the IVF cycle.

Eggs thawed Procedural 
Detail

Indicates the number of eggs that 
were thawed during the IVF 
procedure.

Embryos transferred Procedural 
Detail

The number of embryos 
transferred to the uterus during 
the IVF cycle.

Embryos transferred from 
eggs micro-injected

Procedural 
Detail

Indicates embryos transferred that 
were developed from micro- 
injected eggs.

Embryos stored for use by 
patient

Procedural 
Detail

The number of embryos stored for 
future use by the patient.

Frozen cycle Procedural 
Detail

Indicates whether the cycle 
involved frozen embryos.

Stimulation used Procedural 
Detail

Indicates the type of hormonal 
stimulation protocol used during 
the cycle.

Total embryos created Procedural 
Detail

The total number of embryos 
created during the IVF cycle.

Total number of previous 
treatments, both IVF and 
DI

Patient History Total number of previous 
treatments (IVF or donor 
insemination) conducted at the 
same clinic.

Total number of previous 
IVR pregnancy

Patient History Total number of previous 
pregnancies provided through in 
vitro fertilization (IVF).

Total number of previous 
DI pregnancy

Patient History Total number of previous 
pregnancies achieved through 
either IVF or donor insemination.

Total number of previous 
pregnancies- IVF and DI

Patient History Combination of total number of 
pregnancies provided through 
either IVF or donor insemination 
(DI).

Donated embryo Procedural 
Detail

Indicates whether a donated 
embryo was used during the IVF 
cycle.

Total number of previous 
DI cycles

Patient History Total number of donor 
insemination cycles performed 
prior to the current treatment.

Type of infertility - female 
secondary

Infertility Cause Indicates secondary infertility in 
the female patient.

Type of infertility - male 
primary

Infertility Cause Indicates primary infertility in the 
male partner.

Table 7 (continued )

Feature Name Category Description

PGD (Preimplantation 
Genetic Diagnosis)

Procedural 
Detail

Indicates whether PGD was 
performed to screen embryos for 
genetic abnormalities.

PGT-A treatment Procedural 
Detail

Indicates whether 
Preimplantation Genetic Testing 
for Aneuploidy (PGT-A) was used.

PGT-M treatment Procedural 
Detail

Indicates whether 
Preimplantation Genetic Testing 
for Monogenic disorders (PGT-M) 
was used.

Total eggs mixed Procedural 
Detail

The total number of eggs mixed 
with sperm during the IVF cycle.

Fresh eggs stored Procedural 
Detail

Indicates whether fresh eggs were 
stored for future use.

Fresh eggs stored (0/1) Procedural 
Detail

Binary indicator for whether fresh 
eggs were stored.

Patient Age at treatment Patient 
Demographics

Age of the patient at the time of 
treatment, a known factor 
influencing success.

Previous IVF cycles Patient History Number of IVF cycles previously 
undergone by the patient.

Total number of IVF cycles Patient History Cumulative number of IVF 
attempts by the patient.

Embryos transferred 
during fresh cycle

Procedural 
Detail

Number of embryos transferred 
during a fresh (non-frozen) IVF 
cycle.

Number of embryos 
developed from ICSI

Procedural 
Detail

Total embryos that successfully 
developed after Intracytoplasmic 
Sperm Injection.

Total number of live births 
- conceived through IVF 
or DI

Outcome Total number of live births 
achieved from either IVF or donor 
insemination cycles.
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Gaussian noise (σ = 0.05) had a minor impact (95.2 % accuracy, 95.5 % 
AUC), whereas high noise (σ = 0.15) resulted in a substantial decrease in 
accuracy to 93.0 %. These findings indicate that the model maintains a 
high predictive capability while experiencing some performance 
degradation under extreme noise conditions, despite remaining robust 
against minor variations.

3.5. SHAP analysis of feature importance

The SHAP feature importance values are illustrated in Fig. 7, which 
ranks key predictors according to their contribution to the model’s 

decision-making process for IVF success prediction. Tubal disease, 
partner sperm issues, and sperm shape problems are the most important 
factors, followed by endometriosis, ovulation problems, and unex-
plained infertility, which match what is already known in medicine. 
Furthermore, predictability is influenced by embryo handling factors, 
including the date of egg mixing, embryo thawing, and the presence of 
donor or partner sperm in the eggs, which emphasizes the value of 
laboratory procedures. Stimulation type, frozen cycles, and embryo 
storage are additional pertinent predictors, which underscores the sig-
nificance of treatment strategies. Overall, the SHAP analysis shows that 
the AI model is important for clinical use because it highlights key fac-
tors related to infertility and matches medical knowledge, making it 
easier to understand and trust decisions about fertility treatments.

The SHAP analysis was performed on a test set that was not used 
during training or validation. This ensures that the importance of 
rankings reflects the model’s interpretability and behavior on previously 
unseen data, resulting in a strong and unbiased explanation of the 
model’s decision-making procedure. After training the final model with 
the best features selected by PSO, we calculated SHAP values on the test 
set to see how each feature influenced the model’s predictions about live 
birth outcomes. As explained in Section 3.5 and shown in Fig. 7 and 
Table 11, the highest-ranked features—like "tubal disease," "partner 
sperm immunological factors," and "embryo handling procedur-
es"—were not only important but also made sense in a clinical context, 
matching what we already know in reproductive medicine.

Table 11 shows the SHAP feature importance rankings, which reveal 
the most important variables in predicting live birth outcomes.

Features associated with infertility causes, particularly "tubal dis-
ease" (0.088), "partner sperm immunological factors" (0.084), and 
"sperm morphology" (0.081), dominate the top rankings. Furthermore, 
procedural details such as "date of egg mixing" and "embryo thawing" 
make a significant contribution, highlighting the model’s reliance on 
both clinical history and treatment process variables.

Fig. 8 depicts a concrete example of a negative prediction case in 
which the model predicted a low chance of a live birth after an IVF cycle. 
This visualization depicts how individual features influenced the 
model’s output by displaying the cumulative effect of each feature’s 
SHAP value on the overall prediction. The prediction starts with a 
baseline probability (usually the average prediction across all patients, 
around 0.5), and features are added or removed based on their contri-
bution. In this case, several clinical factors—most notably tubal disease, 
the lack of a fresh transfer, and the presence of endometriosis—all had a 

Fig. 6. Training and validation performance of the Tab_transformer model Over 40 Epochs.

Table 8 
Subgroup metrics for patient age at treatment.

Age Group (Years) Accuracy Precision Recall F1-Score AUC

18–25 94.9 % 93.2 % 94.1 % 95.0 % 94.7 %
26–30 96.8 % 96.6 % 95.9 % 95.7 % 96.9 %
31–35 95.8 % 95.0 % 95.5 % 94.6 % 96.4 %
36–40 94.2 % 93.5 % 93.0 % 94.7 % 94.3 %
41–45 93.5 % 92.1 % 92.9 % 92.5 % 92.7 %

Table 9 
Subgroup metrics for previous IVF cycles.

IVF Cycles Accuracy Precision Recall F1-Score AUC

0 93.9 % 94.3 % 95.0 % 93.1 % 93.7 %
1 95.8 % 95.5 % 94.9 % 94.7 % 94.4 %
2 96.5 % 96.3 % 95.6 % 95.4 % 95.2 %
3 96.3 % 96.0 % 95.5 % 95.2 % 95.6 %
4+ 96.6 % 96.1 % 94.9 % 94.7 % 96.1 %

Table 10 
Performance metrics across different experimental scenarios.

Metric Baseline 
(No 
Changes)

Outlier 
Removed

Balanced 
Data

Moderate 
Noise

High 
Noise

Accuracy 96.5 % 97.2 % 97.1 % 95.2 % 93.0 %
Precision 96.3 % 96.9 % 96.8 % 94.8 % 92.6 %
Recall 96.7 % 97.3 % 97.3 % 95.4 % 93.2 %
F1-Score 96.5 % 97.1 % 97.0 % 95.1 % 92.9 %
AUC 96.8 % 97.5 % 97.4 % 95.5 % 93.1 %
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negative impact, decreasing the predicted likelihood of a live birth. 
Large red bars reflect these factors, causing the prediction to fall. 
Although partner sperm morphology made a small positive contribution 
(green bar), it was insufficient to counteract the overall negative influ-
ence. The patient’s age at treatment had a minor negative impact. 
Overall, these effects produced a final predicted probability of approx-
imately 0.23, prompting the model to classify this instance as a negative 
outcome. This chart makes it clearer and helps doctors understand the 
specific reasons behind the model’s decision, showing how important 
SHAP explanations are in real-life fertility predictions.

Fig. 9 depicts a positive prediction case in which the model predicted 
a high chance of a live birth after IVF treatment. The plot begins with a 
baseline prediction, which typically represents the average model 
output across the population, it then shows how individual features shift 

the prediction upward or downward using their SHAP values. In this 
case, five features had a significant impact on the model’s decision. The 
presence of tubal disease, a fresh embryo transfer, endometriosis, and 
favorable sperm morphology (as evidenced by partner sperm 
morphology) all helped improve prediction. These factors are repre-
sented by a green bar, which incrementally increases the predicted 
probability. Although "age at treatment" had a slight negative contri-
bution (represented by a small red bar), it was insignificant when 
compared to the other features’ strong positive influences. The cumu-
lative impact of these factors increased the prediction from the baseline 
to a final probability of around 0.88, allowing us to confidently classify 
the outcome as a successful live birth. This type of SHAP visualization 
provides an understandable breakdown of the model’s reasoning, 
making it ideal for clinical decision support. By clearly identifying which 

Fig. 7. SHAP feature importance for selected IVF predictors.
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clinical variables most contributed to the predicted outcome, it provides 
clinicians with actionable insights for tailoring treatment plans.

3.6. Temporal feature interpretation

Date of embryo thawing” and “Date of egg mixing” were identified as 

moderately important features. The model can detect latent patterns 
related to the timing and manner of treatments by incorporating these 
precise procedural dates. By encoding the temporal alignment of clinical 
interventions—which can indirectly influence biological proc-
esses—these features play a significant role in model predictions. For 
example, the “Date of embryo thawing” indicates the exact day a frozen 
embryo was prepared for transfer. Even small deviations in thawing 
timing can have clinical implications, particularly in relation to endo-
metrial receptivity. Similarly, the “Date of egg mixing”—the day on 
which oocytes and sperm are combined—can influence the timing of 
fertilization and subsequent developmental kinetics, both of which are 
associated with embryo quality. These temporal variables function as 
anchors, capturing the interaction between laboratory procedures and 
biological readiness during treatment, despite not being biomarkers 
themselves. Beyond their biological implications, such temporal features 
also act as indirect proxies for cohort effects and institutional protocols. 
IVF procedures evolve over time, and different clinics or time periods 
may follow distinct freezing techniques, laboratory practices, embryo 
handling methods, and regulatory standard [33].

3.7. Effectiveness of feature selection methods

To understand how each group of features selected by PSO affects the 
results, we analyzed our internal dataset from 2010 to 2018 by removing 

Table 11 
SHAP feature importance data.

Feature SHAP Importance

Cause of infertility - tubal disease 0.088
Cause of infertility - partner sperm immunological factors 0.084
Cause of infertility - partner sperm morphology 0.081
Cause of infertility - endometriosis 0.078
Cause of infertility - female factors 0.075
Cause of infertility - ovulatory disorder 0.072
Cause of infertility - patient unexplained 0.069
Date of egg mixing 0.066
Date of embryo thawing 0.064
Eggs mixed with donor sperm 0.062
Eggs mixed with partner sperm 0.059
Eggs thawed 0.056
Embryos transferred 0.054
Embryos transferred from eggs micro-injected 0.052
Embryos stored for use by patient 0.050
Frozen cycle 0.048
Stimulation used 0.046
Total embryos created 0.044
Total number of previous treatments, both IVF and DI 0.042
Total number of previous IVF pregnancies 0.040
Total number of previous DI pregnancies 0.038
Total number of previous pregnancies - IVF and DI 0.036
Donated embryo 0.034
Total number of previous DI cycles 0.032
Type of infertility - female secondary 0.030
Type of infertility - male primary 0.028
PGD (Preimplantation Genetic Diagnosis) 0.026
PGT-A treatment 0.025
PGT-M treatment 0.024
Total eggs mixed 0.023
Fresh eggs stored 0.022
Fresh eggs stored (0/1) 0.021
Patient Age at Treatment 0.020
Previous IVF Cycles 0.020
Total number of live births - conceived through IVF or DI 0.019
Total number of IVF cycles 0.018
Embryos transferred during fresh cycle 0.017
Number of embryos developed from ICSI 0.016

Fig. 8. The SHAP waterfall plot shows the top contributing features for the negative prediction (no live birth).

Fig. 9. The SHAP waterfall plot shows the top contributing features for the 
positive prediction (live birth).

A. Borji et al.                                                                                                                                                                                                                                    Computer Methods and Programs in Biomedicine 271 (2025) 108979 

14 



each of the top seven features ranked by SHAP (which are all important 
causes of infertility) and checking how this change impacted the model’s 
performance using the PSO + Tab_Transformer method. The results are 
shown in Table 12. The findings are summarized in Table 12.

These findings indicate that if we take away any of the most 
important features, the performance decreases, especially for tubal 
disease, which shows how crucial they are for the model’s decisions and 
emphasizes the clinical significance of the PSO-selected features as 
shown in the SHAP analysis.

To validate PSO’s effectiveness, we compared it to two conventional 
feature selection techniques: mutual information (MI) and LASSO (L1- 
regularized logistic regression). Each method was used to determine the 
best feature subset, and identical Tab_transformer models were trained 
and tested with the same train/test splits. The comparative results are 
presented in Table 13.

These findings highlight PSO’s superior performance in selecting 
features that align with domain expertise while also resulting in higher 
model accuracy and generalizability. MI and LASSO, on the other hand, 
had lower discriminative power, as evidenced by low AUC scores and 
imbalanced precision-recall behavior.

3.8. Evaluation of the proposed model on an external dataset

Table 14 shows the performance of the proposed PSO +

Tab_transformer-based model on both internal (2010–2018) and 
external (2005–2009) datasets: internal dataset from 2010 to 2018 and 
another from 2005 to 2009. The results show that the model can 
generalize well across dataset from different time points. On the internal 
dataset, the model performed well across all metrics, with an accuracy of 
97 % and an AUC of 98.4 %, indicating high classification capability. On 
the external dataset, which included previously unseen data, the model 
performed almost equally well, with 96.1 % accuracy and 97.2 % AUC. 
This consistency across datasets supports our proposed pipeline’s reli-
ability and stability in predicting IVF live birth outcomes across different 
temporal cohorts.

4. Discussion and conclusion

In this study, we explored various machine learning and deep 
learning models with a combination of two feature selection techniques 
for predicting live birth success in IVF using the comprehensive HFEA 
dataset. Our study could achieve a very high performance for five 
different evaluation metrics by utilizing PSO for feature selection com-
bined with Tab_transformer, an advanced deep learning model. The AI 
pipeline is designed by integrating PSO for feature selection, the Tab_-
transformer for tabular data classification and attention mechanism, 
balanced datasets to address class imbalance, cross-validation to prevent 
overfitting, and robust regularization techniques to enhance model 
stability. The proposed model then has the potential to deal with com-
mon problems like overfitting, inconsistent patient data, and uneven 
datasets, thus showing promise for a clinically applicable tool for 

predicting live birth success in IVF. With an accuracy of 97 %, precision 
of 95.2 %, recall of 96.1 %, F1-score of 95.6 %, and AUC of 98.4, the PSO 
+ Tab_transformer-based model produced exceptional results, making it 
the most successful model for forecasting the success of live births. In 
contrast, the excellent accuracy and recall offered by the transformer- 
based techniques could not be achieved by models like PCA + Deci-
sion Tree and PCA + Random Forest, despite their effectiveness. These 
findings demonstrate that deep learning-based transformer models can 
enhance the prediction of IVF outcomes. These deep learning models 
provide an advantage over conventional classifiers in terms of their 
ability to recognize relevant features and to capture intricate relation-
ships within the data.

Particularly, the Tab_transformer offers several advantages over 
traditional models. First, it can efficiently handle the high-cardinality 
categorical features by learning embedding instead of one-hot encod-
ing, which can lead to representations that are sparse and high- 
dimensional. Second, it captures complex interactions between fea-
tures using self-attention, which traditional models might overlook. 
Third, it reduces the need for extensive manual feature engineering, 
enabling end-to-end learning directly from raw tabular data. This model 
is particularly effective in domains where meaningful relationships be-
tween features play a crucial role. When compared to traditional ma-
chine learning models, the Tab_transformer excels with larger datasets 
and high-cardinality features, offering state-of-the-art performance. 
Historically, the challenges in IVF outcome prediction also including live 
birth prediction included limited application of advanced deep learning 
models for tabular data. The application of these advanced deep 
learning techniques is explored in this study for the first time. We also 
have surveyed some of previous efforts that used the HFEA dataset for 
the classification of live birth success as a binary outcome (success/ 
failure), similar goal to our study (Table 14).

SHAP analysis was implemented to enhance the interpretability of 
AI-driven predictions and to gain a more profound understanding of the 
model’s decision-making process. This analysis uncovered the primary 
features that influence model predictions, thereby improving clinical 
relevance and transparency. We carefully tested the PSO-enhanced 
Tab_transformer model to ensure it was strong and dependable by 
using various methods to change the data and analyze other influencing 
factors. The model showed it can work well for different groups of pa-
tients because it performed consistently well, even when we divided the 
data into smaller groups based on age, gender, and health conditions.

These results confirm that the PSO-enhanced Tab_transformer is a 
dependable tool in clinical decision-making across a variety of scenarios, 
as it is not only highly accurate but also resilient to data variability.

AI models that predict IVF live birth outcomes could improve clinical 
workflows and patient care. A clinical decision support tool (CDST) can 
use the model to help fertility specialists calculate treatment success 
rates based on demographic, clinical, and embryological factors. Pa-
tients can have transparent, data-driven consultations, optimized em-
bryo selection, and customized treatment protocols. Artificial 
intelligence can help patients make informed decisions by providing 
probabilistic success rates, promoting informed consent, and setting 
realistic expectations. AI in high-risk reproductive medicine raises 
ethical concerns despite benefits. First, data bias and algorithmic fair-
ness must be addressed to reduce health disparities, especially when 
models are trained on small or non-representative datasets. Second, 

Table 12 
sensitivity analysis of top SHAP-Ranked feature groups on model performance 
(PSO + Tab_Transformer model).

Feature group removed Accuracy ( 
%)

AUC ( 
%)

F1-Score ( 
%)

Full PSO feature set (no removal) 97 98.4 95.6
Cause: tubal disease 94.4 96.1 93.2
Cause: partner sperm immunological 

factors
95.2 96.9 94.1

Cause: sperm morphology issues 95.0 96.5 93.8
Cause: endometriosis 95.4 96.7 94.2
Cause: female factors 95.7 96.8 94.6
Cause: ovulatory disorder 95.8 96.9 94.7
Cause: unexplained infertility 96.1 97.2 95.0

Table 13 
Comparison of PSO, Mutual Information, and LASSO Feature Selection Methods.

Feature Selection 
Method

Accuracy ( 
%)

Precision ( 
%)

Recall ( 
%)

F1-Score 
( %)

AUC ( 
%)

PSO (Proposed) 97 95.2 96.1 95.6 98.4
Mutual 

information
65.5 65.6 77.9 71.1 70.5

LASSO 65.0 64.9 79.9 71.5 62.8
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clinicians and patients must understand AI-derived predictions, espe-
cially in emotionally and financially sensitive settings like IVF. Over-
using opaque models can impair clinical judgment and patient 
autonomy. Third, low predicted success rates may harm patient choices 
or mental health, while high predictions that failure can cause false hope 
and distress. Finally, delicate reproductive health data requires strict 
ethical and legal standards, so data privacy, regulatory oversight, and 
legal accountability must be considered. AI in IVF has many clinical 
benefits, but it needs a strong ethical framework to ensure fairness, 
transparency, and patient-centered care.

As shown in Table 15, the results of this research surpass all previous 
studies utilizing HFEA datasets. Notably, compared to the study by 
Sadegh-Zadeh et al. [34] achieving an accuracy of 96.35 %, which 
adhered to same inclusion and exclusion criteria as used in our study, 
our study could improve upon these results with an accuracy of 97 %, 
precision of 95.2 %, recall of 96.1 %, F1-score of 95.6 %, and AUC of 
98.4 %.

Among the related recent studies, only Sadegh-Zadeh et al. (2024) 
[34] reported their result on both an internal and external dataset 
related to two separate time points. They achieved a classification ac-
curacy of 96.35 % using ensemble models such as AdaBoost and Logi-
tBoost on HFEA dataset (2010–2016) and validated their model on the 
other temporal dataset of HFEA from 2017–2018 and achieved an ac-
curacy of 95.78 %. As an additional evaluation to the dataset used in this 
study (dataset from (2010–2018) as training and dataset (2005–2009) as 
test), we also trained and test our proposed models using the HEEA 
dataset from the same time period selected by Sadeghzadeh et al. [34] 
(dataset from (2010–2016) as training and dataset from (2017–2018) as 
test) as test in order to enable direct comparison of the performance of 
our proposed method with their results. These results are summarized in 
Table 16.

The results show our model outperforms on multiple evaluation 
metrics across both internal and external datasets. On the internal 
dataset, our model achieved an accuracy of 97.3 %., precision of 95.6 %, 
F1-score of 96 %, and AUC of 98.9 %. Compared to the Sadeghzadeh 
model’s 96.35 %, 87.29 %, 92.96 % and 98 %, respectively. On the 
external dataset, our method was better at generalizing, achieving 
higher accuracy of 96.5 % and almost similar AUC, while the Sadegh-
zadeh et al. results had a lower precision of 85.75 % and a lowerF1-score 
of 92.06 % compared to our methods. These findings highlight our 
pipeline’s robustness, particularly in maintaining high precision and 

balanced performance when tested on different temporally distinct un-
seen data. By applying the same pipeline of our proposed method to the 
2010–2016 dataset, we found that 33 out of the 38 features (88 %) were 
also selected in the 2010–2016 training dataset, indicating a high degree 
of stability. The five features not selected in the 2010–2016 subset were: 
PGT-M treatment, fresh eggs stored (binary), total number of previous 
DI cycles, total number of previous pregnancies (IVF and DI), and em-
bryos stored for use by patient. These excluded features were among the 
lower-ranked in the full-dataset selection and may not have provided 
sufficient predictive value within the smaller, temporally constrained 
dataset. The high overlap between the two features selected using the 
two training datasets related to different time points supports our pro-
posed method consistently identifies core predictive features while 
allowing for minor, context-specific adjustments.

For embryo selection, researchers have used embryo morphological 
grading systems that assess features like fragmentation, cell symmetry, 
and development stage [33]. However, these evaluations are subjective 
and limited in predictive power, with reported AUCs typically ranging 
from 0.60 to 0.70 [34]. Likewise, statistical models such as the Tem-
pleton score rely on simple features like patient age, infertility duration, 
and number of prior IVF attempts, achieving AUCs around 0.68–0.72 
[35]. These models, though interpretable, lack the flexibility to capture 
complex, non-linear patterns in modern IVF datasets. In contrast, our 
method uses a PSO-based feature selection to identify key clinical var-
iables and a Tab_transformer architecture to model interdependence 
using attention mechanisms, which enhances the ability to capture 
important patterns [35]. This enables our model to outperform prior 
approaches, achieving an AUC of 96.5 % on the internal dataset 
(2010–2018) and an AUC of 91.7 % on the external validation set 
(2005–2009). These results not only surpass those of conventional 
scoring systems but also exceed strong ML baselines (e.g., AdaBoost, 
LogitBoost with AUC ≈ 98 % on internal test set but not validated 
externally [32]). In summary, while traditional embryo grading and 
early predictive models have clinical familiarity, our method provides a 
quantitatively superior and generalizable approach, demonstrating 
enhanced robustness, interpretability (via SHAP), and clinical utility.

Future work could focus on integrating additional domain-specific 
features related to IVF treatments and patient characteristics to further 
improve model performance. Exploring the use of other advanced deep 
learning models, including those that account for sequential or temporal 
data, will be also explored for their potential to enhance prediction 

Table 14 
Proposed method’s results on both internal and external datasets.

Proposed method Training/Internal dataset (2010–2018) Test/External dataset (2005–2009)

Accuracy Precision Recall F1-Score AUC Accuracy Precision Recall F1-Score AUC

PSO + Tab_transformer-based model 97 % 95.2 % 96.1 % 95.6 % 98.4 % 96.1 % 94.3 % 95.1 % 94.7 % 97.2 %

Table 15 
Related works Using the HFEA Dataset for Predicting Live Birth Success.

Study Dataset Used Key Features/Methods Model Used Performance Metrics

Zhang et al. [16] 57,558 NC-IVF cycles 
(2005–2016)

Patient demographics, hormonal profiles, cycle history, 
treatment outcomes; data balancing (SMOTE), SHAP, cross- 
validation

Artificial Neural Network 
(ANN)

F1-score: 70.87 %, AUC: 
0.7939

Sadeghzadeh 
et al. [34]

495,630 IVF cycles 
(2010–2018)

Clinical and demographic data; temporal validation, feature 
normalization, interpretability

Ensemble models 
(AdaBoost, LogitBoost)

Accuracy: 96.35 % 
F1-score:92.96

McLernon et al. 
[17].

113,873 women, 184,269 
cycles (1999–2008)

Multiple complete IVF/ICSI cycles; pre- and post-treatment 
analysis

Discrete-time Logistic 
Regression

C-index: 0.73 (pre-treatment), 
0.72 (post-treatment)

Jones et al. [18] 93,495 women, 174,418 
IVF cycles (1991–1998)

Focused on the likelihood of live birth success Logistic Regression AUC: 0.635

Sanders et al. [19] 190,010 IVF cycles 
(2016–2018)

Comparison of PGT-A and non-PGT-A cycles; odds ratios 
(ORs), descriptive statistics

Binary Logistic Regression Focused on ORs instead of 
AUC

This Research 2010–2018 IVF dataset Advanced ML techniques, IVF-specific preprocessing PSO þ Tab_transformer Accuracy: 97 % precision 95.2 
%, Recall 96.1 % 
F1-score :95.6 % 
AUC : 98.4 %.
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accuracy. Expanding the dataset to include more diverse populations 
and treatment types would help improve model generalizability and 
applicability in broader IVF contexts. In addition, expanding the dataset 
to include more diverse populations also including data from different 
geographic locations and treatment types will be explored to help 
further improve model generalizability and applicability in broader IVF 
contexts. In addition, expanding the dataset to include more diverse 
populations also including data from different geographic locations and 
treatment types will be explored to help further improve model gener-
alizability and applicability in broader IVF contexts.’
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