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Abstract

Cone Beam CT (CBCT) has become a routine clinical imaging modality in interventional radiology. Extended Field of
View (FOV) CBCT is of great clinical importance for many medical applications, especially for cases where the Volume of
Interest (VOI) is outside the standard FOV. In this study, we investigate FOV extension by optimizing customized source-
detector CBCT trajectories using Simulated Annealing (SA) algorithm, a heuristic search optimization algorithm. The SA
algorithm explores different elliptical trajectories within a given parameter space, attempting to optimize image quality
in a given VOI. Kinematic constraints (e.g., due to collisions of the imager with the patient or other medical devices)
are taken into account when designing the trajectories. For optimization process, a digital XCAT body phantom was
used in which three lesions were placed at extreme positions in the phantom that could not be imaged with the standard
circular trajectory. The volume around each lesion was considered as VOI. The geometry of Philips Allura Xper C-arm
was considered for simulation. Tomographic Iterative GPU-based Reconstruction (TIGRE) and Universal Quality Index
(UQI) were used for image reconstruction and image quality assessment, respectively. Our results showed that proposed
trajectories could achieve a UQI of 0.9148, 0.9681, and 0.9632 at the respective three VOIs, which was significantly better
image quality compared with circular trajectory (0.5960, 0.4892, and 0.4798 for the three VOIs). In addition, the FOV
extension achieved for the three optimized source-detector trajectories was 28.75%, 23.57%, and 22.49%, respectively.
Our experimental results have shown that our proposed customized trajectories can lead to an extended FOV and enable
improved visualization of anatomical structures in extreme positions while taking into account the available kinematic
constraints. This study offers a new approach to improve the diagnostic capabilities of CBCT imaging, thus providing
valuable insight into improving patient care in CBCT imaging.

1 Description of purpose
In this study, we propose customized Cone Beam CT (CBCT) Field of View (FOV) extension by optimizing source-detector
trajectories using Simulated Annealing (SA) algorithm. The proposed trajectories can extend the FOV and reconstruct
Volumes of Interest (VOIs) at extreme locations that cannot be imaged with standard circular trajectories, taking into
account kinematic constraints available in the surgery setup.

2 Methods
The SA is stochastic global search optimization algorithm which is commonly used to optimize a multi-parameter prob-
lem. It simulates the process of heating and then gradually lowering the temperature of a material. In reality, this is
done to decrease defects and therefore, minimize the system energy. This algorithm can solve both unconstrained and
bound-constrained optimization problems. A SA iteration begins with generating a new point on the available parameter
space randomly. The distance of the new point from the current point follows a probability distribution which has a scale
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proportional to a variable called temperature. All new points which can lower a defined objective function, and also some
which raise the objective function based on a certain probability are accepted by the algorithm. The latter avoids that the
algorithm gets stuck in local minima in early iterations and enables searching for global optimum in a more efficient way.
The temperature is controlled by the annealing schedule and is steadily decreased, while the best found point is stored.
With decreasing temperature, the algorithms search reduces its extent. After a certain amount of points were accepted,
reannealing takes place, meaning that the temperature is raised again and the process is repeated to potentially find a better
solution this time. The algorithm stops after a stopping criterion is reached [1][2].

In this study, we use the geometry of a Philips Allura FD20 Xper C-arm for our experiments. The FD20 C-arm has
810 mm source-axis distance, 1195 mm source-detector distance, and a 38×38cm2 detector with 0.7413 mm pixel pitch.
For this study, we propose variations of elliptical trajectories to extend the FOV for particular VOIs. These elliptical tra-
jectories have five parameters including ellipse long axis, ellipse short axis and isocenter x, y, z offsets from the origin
(x, y and z correspond to right/left, front/back and cranial/caudal directions, respectively). These parameters form the
parameter space which are then given to the SA algorithm for trajectory optimization process. To define these parameters,
kinematic constraints e.g, collision to the patient table or patient body are taken into account. According to such kinematic
constraints, defined on the geometry of the C-arm device similar to our previous publications [3][4][5], ellipse long and
short axis can both have a range between 1 to 100 mm. In addition, the x, y and z origin shift can be a value between 0 to
maximum 100 mm in each direction. If an elliptical trajectory was chosen that includes some unfeasible points (due to the
collisions and constraints), the part which were not feasible were excluded (red marks in Figure 3).

For the simulations an XCAT digital body phantom was used [6]. We included three lesions at different positions in
the phantom at thorax area. They were placed in phantom in extreme positions which would not be fully imaged with
the standard circular trajectory. The goal was to reconstruct the regions around the lesion (defined as our VOI) optimally
and to extend the FOV to include the particular VOI. For image reconstruction the Simultaneous Iterations Reconstruc-
tion Technique (SIRT) with 100 iterations from the Tomographic Iterative GPU-based Reconstruction (TIGRE) toolkit
was employed [7]. The projection number was set to 360. The Universal Quality Index (UQI) was used as the objective
function for SA optimization which was calculated at the defined VOI between the reconstructed images from the elliptical
trajectory and the ground truth (digital phantom). The goal was to find an elliptical trajectory which minimizes the value
of 1-UQI (in order to maximize UQI) for a given VOI. As a stopping criteria for SA, 1000 objective function evaluations
(iterations) was chosen. For comparison, the UQI value between circular trajectory and the ground truth was also computed
at three VOIs. To approximate the FOV extension, the 3D images from the circular and the optimized reconstruction were
split into many small cubes with a length of 10 voxels. Then the UQI value is calculated for all of the cubes between the
reconstructed images and corresponding cubes in the digital phantom. We considered the total number of cubes with an
UQI value above a certain threshold as a measure for the FOV extension. The threshold was chosen 0.85 which showed
a good compromise for image quality. This measure was computed for both circular and optimized trajectories and the
difference was reported as the FOV extension measure. We should note that our proposed approach assumes a registered
preoperative CT for trajectory optimization design (this can be done for example based on some initial projections and
2D/3D registration).

3 Results
Reconstructed images from circular and optimized trajectories at three lesion locations (VOIs 1-3) are shown in Figures 1
and 2. The isocenter offset corresponding to the source-detector trajectories for the three VOIs are shown in Figure 3 (the
red assignment in Figure 3 represents the kinematic constraints which limited the offset). The optimization process and the
best objective function value results (1-UQI) are shown in Figure 4 and Figure 5, respectively. The achieved UQI values
for the three VOIs 1-3 for both circular and the optimized trajectories are reported in Table 1. In addition, the achieved
FOV extension results for the three trajectories are given in Table 1 and are visualized in Figure 6.
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(a) (b) (c)

Figure 1: Reconstructed images from circular source-detector trajectory at three lesion locations (VOIs 1-3 from left to
right).

(a) (b) (c)

Figure 2: Reconstructed images from optimized trajectories at three lesion locations (VOIs 1-3 from left to right).

(a) (b) (c)

Figure 3: The isocenter offset in x and y directions corresponding to optimized source-detector trajectories for the three
VOIs (VOIs 1-3 from left to right).

VOI (a) VOI (b) VOI (c)

U
Q

I Circular trajectory 0.5960 0.4892 0.4798
Optimized trajectory 0.9148 0.9681 0.9632

FOV extension 28.20% 23.57% 25.48%

Table 1: Results including UQI values achieved at three VOIs for both circular and optimized trajectories as well as FOV
extension percentage.
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(a) (b) (c)

Figure 4: SA optimization processes to achieve the three optimized trajectories corresponding to VOIs 1-3 (from left to
right). The objective function value (1-UQI) is plotted over the 1000 iterations.

(a) (b) (c)

Figure 5: Best achieved objective function value (1-UQI) is presented over the 1000 iterations for the three optimized
trajectories corresponding to VOIs 1-3 (from left to right). The last point (point at iteration 1000) corresponds to the final
UQI value.

(a) (b) (c)

Figure 6: Illustration of FOV extension results. The blue and red markers depict the location of cubes where an UQI value
above 0.85 is reached for standard circular and optimized trajectories, respectively (for the three VOIs (VOIs 1-3 from left
to right)).
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4 Conclusion
This study shows that the SA algorithm can efficiently be used for optimizing source-detector trajectories for customized
FOV extension in CBCT imaging. The achieved trajectories take into account the available kinematic constraints and
enables CBCT imaging at extreme points which are not able to be reconstructed appropriately using standard circular
trajectory.
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