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ABSTRACT
In the case of Minimally Invasive Surgery (MIS), surgeons reach the

human organs through small skin incisions. This approach – compared to
open-access surgery – results in less trauma, smaller scars and quicker recov-
ery to the patient. On the other hand, MIS requires extensive training, because
handling the MIS surgical (laparoscopic) tools is not trivial, the operating area
is visualized by an endoscopic camera, the surgeon has limited view, and long
surgeries can cause great fatigue. Robot-Assisted Minimally Invasive Surgery
(RAMIS) can provide help with these MIS challenges. The da Vinci Surgi-
cal System (dVSS) is at the moment the market leading RAMIS system with
more than 7000 clinical systems all over the world. DVSS can help the sur-
geons with 3D vision, ergonomy, intuitive tool handling, tremor filtering and
motion scaling. DVSS is a teleoperational system, the surgeon remotely oper-
ates the patient-side robotic arms from a master console. With dVSS, MIS can
be more precise, and it can decrease the workload on the surgeon. MIS was a
revolution in medicine 30 years ago, and it is now part of the everyday clini-
cal routine. Training is crucial in the case of MIS, since it requires extensive
practical skills as well. Nevertheless, MIS surgical skill assessment is not part
of the clinical practice. During their studies, surgical residents have to take
practical exams, but the assessment of these is usually done manually by an
expert surgeon. The goal is to assess the skills of the surgeon autonomously,
with available or additional sensors. With autonomous approaches, un-biased,
objective surgical skill assessment can be achieved, furthermore, it does not
require resources from expert surgeons. With the dVSS, these sensory infor-
mation are more trivial to access, the kinematic and video data of the surgeon
is recordable, and the motion of them can be examined. There are technical
and non-technical skills in surgery; technical skills include instrument han-
dling, knowledge of equipment, knowledge of procedure, and indirect indica-
tors (used forces, elapsed time), etc.; non-technical skills are such as leader-
ship, situation awareness, decision making, dealing with stress, etc. Both of
the skillsets make a good surgeon, and with frequent assessment personalized
training and better patient outcome is achievable. Since kinematic data-based
skill classification in RAMIS can achieve an almost perfect accuracy, but en-
doscopic images are available in traditional MIS and in training videos, in this
work, RAMIS technical skill assessment was examined through endoscopic
images, and their correlation with kinematic data was studied. In my first the-
sis group, I proved the applicability of image-based surgical tool pose estima-
tion in RAMIS technical skill assessment, with proposing an articulated tool
pose estimation methodology for robotic surgery training videos and showing
its correlation with kinematic data. I also suggested a semantic segmentation
method for surgical tools in a skill-annotated database to validate image-based
surgical skill assessment. In my second thesis group, I proved the hypothesis
that surgical non-technical skills can be accurately estimated with objective
parameters (image and force). In this thesis work, I presented a training envi-
ronment and workflow for laparoscopic cholecystectomy training, simulating
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a stressful surgical environment. I showed that Artificial Intelligence methods
are powerful tools not just in technical, but in non-technical skill assessment
as well. In my third thesis group, I proposed a complete framework for skill
assessment in the case of surgical automation. Automating the motion of the
camera holder arm is already the part of certain commercialized laparoscopic
systems, and surgical skill assessment is essential in this cases for safety rea-
sons. In this thesis group, I proved that Optical Flow is an image feature,
which correlates with the surgical technical skills. I also proposed a cam-
era motion automation method for the dVSS. Finally, I validated an Optical
Flow ego-motion compensation method to extract the surgical tool motions
only, and to exclude camera motion from the Optical Flow vector field. These
theses can widely support automation of RAMIS technical and non-technical
skill assessment based on sensory data, which can be the next step towards the
deeper understanding of surgical data.
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KIVONAT
Minimál Invazı́v Sebészet (MIS) esetén a sebészek kis bemetszéseken

keresztül érik el a belső szerveket. Ez a megközelı́tés – a nyı́lt műtéthez
képest – kisebb traumát és hegeket, gyorsabb felépülést eredményez a be-
tegnek. A MIS azonban rendszeres gyakorlást igényel; a MIS sebészeti (la-
paroszkópos) eszközök kezelése nem triviális, a műtéti területet endoszkópos
kamera által vizualizált, a sebésznek korlátozott rálátása van az operálandó
területre, továbbá a hosszú műtétek nagy fizikai és mentális terhelést okozhat-
nak. A Robottal Támogatott Minimál Invazı́v Sebészet (Robot-Assisted Mini-
mally Invasive Surgery, RAMIS) támogatást nyújthat az MIS kihı́vásaihoz. A
da Vinci Sebészeti Robotrendszer (da Vinci Surgical System, dVSS) jelenleg
a piacvezető RAMIS eszköz, több mint 7000 klinikai rendszerrel a világon.
A dVSS segı́tséget nyújthat a sebészeknek a 3D látás, az ergonómia, az in-
tuitı́v eszközkezelés, a kézremegés szűrés és átskálázott mozgás révén. A
dVSS egy teleoperációs rendszer, a sebész távolról irányı́tja a beteg oldali
robotkarokat a sebész oldali konzollal, segı́tségével a MIS beavatkozás pon-
tosabb lehet, és csökkentheti a sebész terhelését. A MIS forradalmat jelentett
az orvostudományban, azonban ma már a mindennapi klinikai rutin része. A
képzés döntő fontosságú az MIS esetében, mivel széleskörű gyakorlati isme-
reteket igényel. Ezzel szemben az MIS sebészeti készségek felmérése nem
része a klinikai gyakorlatnak. Tanulmányaik során a sebészeknek gyakorlati
vizsgákat kell tenniük, de ennek kiértékelését általában egy sebész szakorvos
manuálisan végzi. A cél a sebész képességeinek automatizált mérése, rendel-
kezésre álló vagy integrált szenzorokkal. Automatizált megoldásokkal meg-
valósı́tható az objektı́v sebészeti készségfelmérés, továbbá nem igényli gya-
korlott sebész bevonását. A dVSS segı́tségével ezek a szenzoros információk
elérhetőek, a sebész kinematikai és videó adatai rögzı́thetők, mozgásuk vizs-
gálható. Léteznek ún. technikai és nem-technikai készségek a sebészetben;
a technikai készségek, mint például: eszközkezelés és -ismeret, eljárások is-
merete, indirekt indikátorok, pl. felhasznált erők, idő, stb.; a nem-technikai
készségek, mint a vezetői készségek, a helyzeti tudatosság, a döntéshozás,
a stressz kezelése, stb. Mindkét készség-tı́pus fontos a sebészetben, kész-
ségfelméréssel pedig személyre szabott képzés és kedvezőbb műtéti kimenet
érhető el. Mivel RAMIS esetében a kinematikai adatokon alapuló képesség-
osztályozás majdnem tökéletes pontosságot érhet el, és az endoszkópos képek
a hagyományos MIS és oktatóvideók esetében is elérhetők, ebben a dolgozat-
ban a RAMIS technikai készségfelmérést endoszkópos kameraképeken ke-
resztül vizsgáltam, illetve a képi adatok összefüggését a kinematikai adatok-
kal is bemutattam. Bizonyı́tottam a kép alapú sebészeti eszközök pozı́ció-
becslésének alkalmazhatóságát a RAMIS technikai készségfelmérésben egy
sebészeti eszköz pozı́cióbecslés módszertan javaslatával robotsebészeti ok-
tatóvideókhoz és bemutatom a korrelációját a kinematikai adatokkal. Javasol-
tam továbbá egy szemantikai szegmentálási módszert a sebészeti eszközökhöz
egy készség-annotált adatbázisban a képalapú sebészeti készségfelmérés va-
lidálására. Második tézisemben azt a hipotézist bizonyı́tottam, hogy a sebé-
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szeti nem-technikai készségek objektı́v paraméterekkel (kép és erő) becsülhe-
tők. Javasoltam a laparoszkópos cholecystectomia tréninghez képzési környe-
zetet és munkafolyamatot, egy stresszes műtéti környezetet szimulálva. A
dolgozatban bemutattam, hogy a mesterséges intelligencia alapú módszerek
nemcsak a technikai, hanem a nem-technikai készségfelmérésben is hatékony
eszközök. Harmadik téziscsoportomban egy keretrendszert javasoltam a kész-
ségfelméréshez sebészeti folyamatok automatizálásához. A kameratartó kar
mozgásának automatizálása már része bizonyos kereskedelmi forgalomba ho-
zott laparoszkópos rendszereknek, és biztonsági okokból ilyenkor elenged-
hetetlen a sebészi készségfelmérés. Dolgozatomban bizonyı́tottam, hogy az
optikai áramlás egy olyan képjellemző, amely korrelál a sebész technikai
készségeivel. Javasoltam egy kameramozgás automatizálási módszert továbbá
a dVSS-hez. Végül validáltam egy optikai áramlási sajátmozgás kompenzációs
módszert, amely által elérhetőek a sebészeti eszközök mozgása, és kizárja a
kamera mozgását az optikai áramlási vektormezőből. Téziseim széleskörben
támogatják a RAMIS szenzoros adat alapú technikai és nem-technikai kész-
ségfelmérés automatizálását, amely a következő lépés lehet a sebészeti adatok
mélyebb megértése felé.
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Structure of the Thesis

The thesis is consists of six chapters.
Chapter 1 gives an overview on Robot-Assisted Minimally Invasive Surgery and surgi-

cal skill assessment. Surgical skill assessment is divided into two main research domains:
technical and non-technical approaches.

Chapter 2 collects the challenges in the main topical areas of the dissertation, high-
lighting why these problems require a scientific solution utilizing novel approaches. The
problems stated in this chapter are related, but not restricted to technical and non-technical
surgical skill assessment. The aim of my work is to propose a solution to the challenges
of these domains.

Chapter 3, 4, 5 are covering the topics of the three major thesis groups, introducing
the core research of my Ph.D. work. The chapters independently address the problems
stated in Chapter 2. All of these chapters start with theoretical background, followed by
methodology, development and experimental validation. The results and the evaluation of
the findings are discussed at the end of each chapter.

Finally, Chapter 6 gives a structured summary of the key results of my research, pro-
viding an outlook on the current and future efforts that can utilize the findings of this
work.

Numbering of equations, tables and figures is following the structure of the chapters.
The independent references are numbered as [1],[2],..., thesis-related own publications are
denoted as [RNE-1],[RNE-2],..., while the own publications that are not related to this
thesis are numbered as [RNENR-I],[RNENR-II],... The language of the dissertation is
English, following the U.S. English grammar and spelling rules.
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Frequently used Notations and Symbols

TABLE 1: Common abbreviations and notations

AI Artificial Intelligence
AR Augmented Reality
CG Control Group
CIS Computer-Integrated Surgery

ConvAuto Convolutional Autoencoder
CNN Convolutional Neural Network

CSRT Channel and Spatial Reliability Tracker
DCT Discrete Cosine Transformation
DFT Discrete Fourier Transformation
DoA Degree of Autonomy
DoF Degrees of Freedom

DNN Deep Neural Network
DVRK Da Vinci Research Kit
dVSS da Vinci Surgical System
ECM Endoscope Camera Manipulator
FCN Fully Convolutional Neural Network
FDA United States Food and Drug Administration
FLS Fundamentals of Laparoscopic Surgery
FPS Frames per Seconds
FN False Negative
FP False Positive

FRS Fundamentals of Robotic Surgery
GEARS Global Evaluative Assessment of Robotic Skills

HMM Hidden Markov Model
HR Heart Rate

ICARS Interpersonal and Cognitive Assessment for Robotic Surgery
iDT Improved Dense Trajectory
IEC International Electrotechnical Commission
IoU Intersection over Union
ISO International Organization for Standardization

JIGSAWS JHU–ISI Gesture and Skill Assessment Working Set
KT Knot-tying
LC Laparoscopic Cholecystectomy

LDA Linear Discriminant Analysis
LDLJ Natural log of Dimensionless Jerk

LOOCV Leave One Out Cross-Validation
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MES Medical Electrical System

MICCAI The Medical Image Computing and Computer Assisted Intervention Society
MIS Minimally Invasive Surgery
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MP Medical Professionals
MSE Mean Squared Error

NASA-TLX NASA Task Load Index
NN Neural Network
NP Needle-passing

NTS Non-Technical Skills
NOTSS Non-Technical Skills for Surgeons

OF Optical Flow
OR Operating Room

OSATS Objective Structured Assessment of Technical Skill
PCA Principal Component Analysis
PnP Perspective n Point Transformation

PSM Patient Side Manipulator
RAMIS Robot-Assisted Minimally Invasive Surgery
ResNet Residual Neural Network

ROI Region of Interest
ROS Robot Operating System

SURG-TLX Surgical Task Load Index
SA Situation Awareness

SDS Surgical Data Science
SPARC Spectral Arc Length

ST Suturing
STIP Space Temporal Interest Points
SVM Support Vector Machines
TCP Tool Center Point

TN True Negative
TP True Positive
VR Virtual Reality

2/3D Two/Three Dimensional
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Chapter 1

INTRODUCTION

1.1 A brief introduction to Computer-Integrated Surgery
The history of surgical robotics started in the early 1960s – the US National Aeronautics
and Space Administration (NASA) and the US Department of Defense, Defense Advanced
Research Projects Agency (DARPA) laid the foundations of telerobotic surgical systems.
Originally, their aim was to provide medical assistance for astronauts or wounded soldiers
during their remote missions. For this, teleoperated robots would have been used, operated
from the Earth. Mainly because of costs,at the end of the cold war, the technology was
released for commercial purposes, the attention from telesurgery in space shifted to shorter
distance telesurgery solutions, and soon, the first surgical robot prototypes received their
Food and Drug Administration (FDA) clearance, and entered the U.S. market in the year
2000 [18].

The basic concept of Computer-Integrated Surgery (CIS) can be fitted to the Computer-
Aided Design/Computer-Aided Manufacturing (CAD/CAM) paradigm known from the
manufacturing industry, which involves the data–model–plan–execution–evaluation cy-
cle, where surgical robotics takes the most important role in the execution step [1, 19]
(Fig. 1.1). The evolution of advanced information sources mainly images, (such as en-
doscopic, Computed Tomography, Magnetic Resonance Imaging, etc.) and the develop-
ment of robotic devices led to the concept of robot-assisted or robot-executed surgeries
(Fig. 1.2). However, against the everyday terminology, surgical robotics does not neces-
sarily mean high level of autonomy: there are devices, which only performs low-level,
assistance-based automation, such as the market leading da Vinci Surgical System (dVSS,
Intuitive Surgical Inc., Sunnyvale, CA). Advanced image-guided surgical systems, such as
CyberKnife (Accuray Inc., Sunnyvale, CA) can perform high-level autonomy [20].

Pre-operative and intra-operative surgical planning in CIS (in most of the cases) is
based on the human operator, however, with autonomous image segmentation, registra-
tion, classification and diagnosis techniques, the accuracy can be increased, and it can also
decrease the workload of the surgeon [21] (Fig. 1.1). In the case of execution, autonomy,
Augmented Reality (AR)/Virtual Reality (VR), tracking, navigation and advanced robot
control can be an added value in the future. For the future CIS concepts, the intra-operative
evaluation might include decision support, intelligent re-planning, data acquisition and im-
age processing steps. The post-operative analysis can be extended with autonomy assess-
ment, motion analysis and autonomous surgical skill assessment. With advanced algorith-
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Fig. 1.1. The future concept of robotic surgery with advanced algorithm and AI-based support presented
with the surgical CAD/CAM model, based on the original model by Taylor et al. [1].

mic and Artificial Intelligence (AI) approaches, higher accuracy and automated surgical
skill ealuation can be achieved in surgical robotics, which can improve patient safety [22].

1.1.1 Robot-Assisted Minimally Invasive Surgery
Minimally Invasive Surgery (MIS) induced a paradigm change in medicine; however, it
presented new challenges for surgeons [23, 24]. In the case of MIS – against traditional,
open-access surgery – inside organs are reached through small skin incisions with laparo-
scopic instruments, and the operating area is visualized with an endoscopic camera. Dur-
ing MIS, the operator (surgeon) has to work in a team as a leader, s/he gives instructions
to a camera handler assistant and the other operating room members, while s/he has to
constantly monitor the operating area typically on a 2D screen in an uncomfortable po-
sition. Thus, despite the clear benefits of MIS, including the smaller scars and faster
recovery time, there are drawbacks for the physicians, such as the limited motion space,
complicated instrument control, not ergonomic environment and the 2D endoscopic cam-
era image.

Robot-Assisted Minimally Invasive Surgery (RAMIS) was the next step in the evolu-
tion of MIS: it provided an improved vision system, more accurate and intuitive instrument
control and an ergonomic master console [20, 25]. The most successful RAMIS system
is the dVSS, which is a teleoperated, master-slave type surgical robot. In the case of
the dVSS, the surgeon sits at an ergonomic master console, where he can operate with
intuitively-controlled master arms. The surgeon can use pedals for clutch, and to control
the endoscopic arm, thus camera control is only in the hands of the surgeon. At the patient
side of the da Vinci, there are the remotely controlled (“slave”) arms, which accomplish
the interventions minimally invasively with a motion mechanism called “Remote Center
of Motion” (RCM), which can add to patient safety. The assistant crew works at the pa-
tient side of the da Vinci, where they can help the surgeon and support the intervention,
such as changing the surgical instruments during the operation. At the patient side, there
is a 3D endoscopic camera, through which images are visualized in the screens placed
in the master console; thus, the surgeon can see a magnified 3D image of the operating
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Fig. 1.2. Commercialized, ready-to-launch and research robotic surgical systems along the three main
control types (teleoperation, cooperative, image-guided). A) Da Vinci Xi (Intuitive Surgical Inc.), b) Cy-
berKnife (Accuray Inc.), c) TSolution One (THINK Surgical Inc.), d) Senhance Surgical Robotic System
(Asensus Surgical), e) iSYS/Micromate/Stealth autoguide robot (Medtronic), f), Eigen ARTEMIS (Eigen
Health) g), Revo-i (Meerecompany), h) Neuromate (Renishaw), i) Mako (Stryker Corporation), j) Hugo
RAS system (Medtronic), k) Versius (CMR Surgical), l) da Vinci SP (Intuitive Surgical Inc.).

area. The motion of the surgeon can be re-scaled on the patient side of the da Vinci, which
can provide more accurate motion. However, the original idea of remote surgery was to
operate over long distances; for safety reasons, at the moment it is not part of the clinical
practice. The dVSS does not present automation or decision making, the only very low-
level automation in the dVSS is tremor and abrupt motion filtering. A steep learning curve
has been identified with the da Vinci [26, 25]. Thus, despite the fact that RAMIS can de-
crease the mental workload of the surgeon as shown through by studies, RAMIS remains
a challenging operation to perform not just physically, but mentally as well, because of
the constant communication, teamwork, leadership, decision making and workload condi-
tions [27, 28, 29].

1.2 RAMIS skill training and assessment
It may be important to evaluate surgical skills for quality assurance reasons, when that
becomes part of the hospital’s quality management system. Most commonly, only the
proof of participation at theoretical and practical training is required. Arguably, objective
feedback could assist trainees and practicing surgeons as well in improving their skills
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Fig. 1.3. The Dreyfus model of skill acquisition. It defines 5 expertise levels and shows the
differences between their qualities [2].

along the carrier. The fundamental challenge with skill assessment is that traditionally, the
patient outcome used to be the only objective metric, and given the amazing variety and
individual characteristic of each procedure, it has been really hard to derive distinguishing
skill parameters. The subjective evaluation provided by other experts did not make it easy
to compare results and metrics, therefore more generally agreed, standardized evaluation
practices and training platforms had to be developed. A good example for this is the Fun-
damentals of Laparoscopic Surgery (FLS), a training and assessment method developed
by the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) in 1997,
and widely adapted: it measures the manual skills and dexterity of an MIS surgeon, and
provides a comparable scoring [30]. A similar metric for RAMIS surgeons was recently
introduced, called Fundamentals of Robotic Surgery (FRS) [31].

In general, to understand the notions of ’skill’ and ’skill assessment’, the Dreyfus
model [32] can be considered. The Dreyfus model refers to the evolution of the learn-
ing process, and it describes the typical features of the expertise levels (Fig. 1.3). For
example, a novice (in general) can only follow simple instructions, but an expert can bet-
ter react to previously unseen situations. In the literature, other skill models can be found,
such as the classic Rasmussen model, which was created for modeling skill-, rule- and
knowledge-based performance levels [33]. An other approach for modeling skills was in-
troduced by Azari et al., which is specifically created for modeling surgical performance
domains (Fig.1.4) [3]. RAMIS provides a unique platform to measure parameters which
can help us in defining these skill levels objectively, since it makes low level motion data
and spatial information available. Finding the proper parameters and algorithms that de-
fine the surgical skills is crucial in assessment [34].

There are several console training methods for RAMIS, which can provide the required
practice for the surgeon [35]:

• virtual reality simulators;
• dry lab training;
• wet lab training;
• training in the operating room with a mentor.

Each has their own advantages and disadvantages, but from the clinical applicability
point of view, the most important question is how fairly do these represent surgical skills.
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Fig. 1.4. Quantified performance model for surgical skill performance. The model describes
the terms of ’skill’: experience, excellence, ability and aptitude. ”Ability” can be defined as the
cumulative result of all actions that a surgeon has previously shown competence in, essentially
represented as the area under continuous performance curves. On the contrary, ”aptitude” refers
to the speed or slope of this curve from the moment deliberate practice starts to when a surgeon
consistently demonstrates competence. Meanwhile, ”experience” can be visualized as an ever-
expanding domain and depth of familiarity, encompassing the total number of distinct encounters
and deliberate practice instances throughout a surgeon’s professional journey [3].

Nowadays, there is still no objective surgical skill assessment method used in the operat-
ing room (OR) beyond board examination more experienced surgeons may provide some
feedback, but rarely quantify the skills of their colleagues.

1.2.1 RAMIS technical and non-technical skill assessment
The improvements of RAMIS can help the surgeon, however, RAMIS is still a hard task
to master; continuous training and feedback about the performance is crucial. Technical
skills in RAMIS are related to the basic skills of the surgeon (knowing the instruments,
using the right tools, etc.), the control of the robot and MIS tools (bimanual dexterity,
endoscopic camera handling, clutch handling, instruments kept in view, etc.) and tissue
handling (force sensitivity). Nevertheless, non-technical skill assessment is less exact.
Despite the fact that RAMIS can decrease the mental workload of the surgeon as shown
through studies, RAMIS remains a challenging operation to perform not just physically,
but mentally as well, because of the constant communication, teamwork, leadership, deci-
sion making and workload conditions (Fig. 1.5) [27, 28, 29].

The workload on the surgeon – which represents the effort to perform a task – can be
high in several segments of a procedure: there are mental, physical and temporal demands;
furthermore, task complexity (including multitasking, task novelty), situational stress and
distractions can influence the outcome of the surgery [14, 36] (Fig. 1.6). Naturally, the
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Fig. 1.5. The da Vinci S with the identified non-technical skills and workload. The surgeon operates at the
master side of the system, while the assistance helps their work at the patient side. The patient side arms
are controlled by the surgeon with the master arms. Robot-Assisted Minimally Invasive Surgery requires
not just technical skills, but non-technical skills as well from the operating crew, specifically inter-personal
skills, leadership, cognitive skills and personal resource skills, while they have to deal with the workload.
Original image credit: Intuitive Surgical Inc. [4].

same task can cause different workload to different operators. Non-technical skills (NTS)
related to the workload on the surgeon, furthermore, it can directly affect surgical outcome.
NTS include communication, teamwork, task management, leadership, decision making,
situational awareness and cope with stress, fatigue and distractions based on validated met-
rics, such as Non-Technical Skills for Surgeons (NOTSS) and Interpersonal and Cognitive
Assessment for Robotic Surgery (ICARS) [16, 17] (Fig. 1.6). While it is straightforward
that technical skills are crucial for better surgical outcomes, non-technical surgical skills
can be as important as technical skills. Clinical failures in the operating room may come
from low NTS of the surgeon than the lack of technical skills [37, 38, 39].

In the literature, three approaches for surgical performance assessment can be identi-
fied [40, 41]:

• self-rating questionnaires;
• expert-based scoring and
• automated skill assessment.

Questionnaires are filled by the operator; thus, it is easy to implement and subjective.
Objective scoring is done by an expert panel, based on a standardized method [42]. Expert
ratings are supposedly objective, yet may be biased for personal reasons, furthermore, they
can be hard to implement, being human resource intensive. Automated skill assessment is
based on objectively measurable parameters (such as applied forces, movement velocity,
etc.), however, in most cases, it is technically not easy to implement. Robotic surgical
systems can provide a unique platform for objective skill assessment due to the recordable
kinematic and video data [20]. The mentioned surgical skill assessment approaches can be
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Fig. 1.6. Surgical skills are built of technical skills, non-technical skills and workload. Surgical skill
training and assessment can directly affect the skills of the surgeon, and through patient outcome.

found in technical skill, non-technical skill and mental workload assessment as well. For
mental workload assessment, questionnaires and automated solutions can be useful tools,
and for technical and non-technical skill assessment all of the methods (questionnaires,
expert-rating and automated techniques) can be utilized.

The difference between traditional MIS and RAMIS mental workload was examined
in some studies [43, 44], demonstrating lower mental workload in the case of RAMIS.
However, questionnaires created for traditional MIS were used in these studies, the main
workload parameters in RAMIS are not yet defined. For RAMIS, non-technical skill as-
sessment expert-rating methods originally created for traditional MIS can be found [45,
46]. There is one metric specifically created for RAMIS non-technical expert-rating as-
sessment (ICARS, [17]), which collects the most important NTS in RAMIS (Fig. 1.6).
NTS are naturally hard to be measured automatically. The possibilities for automated
RAMIS non-technical skill assessment are similar to traditional MIS, such as relying on
physiological signals measured by additional sensors [47].

The goal of technical and non-technical skill assessment is to employ automated and
objective methods to measure the skills of the surgeon; thus avoiding biased assessment
and the need for human resources. The built-in sensors of RAMIS can significantly ease
automated skill assessment, since there are recordable kinematic and video parameters of
the surgery (such as tool trajectory, orientation, velocity, etc.), which can provide input
for skill assessment algorithms (statistical analysis or AI methods), towards manual MIS,
where these data are only available with additional sensors. The clinical dVSS is a closed
system, therefore to analyze surgical data, external recorders are necessary, such as the
da Vinci Research Kit (DVRK, developed by a consortium led by Johns Hopkins Univer-
sity and Worcester Polytechnic Institute), which can provide open-source hardware and
software elements with complete read and write access to the first generation da Vinci
arms [48].
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Fig. 1.7. Robot-Assisted Minimally Invasive Surgical systems architecture and typical layout diagram with
the most important components in the case of non-technical skill assessment and mental load evaluation
based on the IEC 80601-2-77 robotic surgery safety standard [5, 6].

To understand where NTS can be identified in the case of RAMIS, high priority (in-
teraction and communication) channels and interfaces have to be identified and analyzed.
The International Electrotechnical Commission (IEC) and the International Organization
for Standardization (ISO) published a safety standard for surgical robots, the IEC 80601-
2-77. In the standard, the components of RAMIS are defined, and a basic diagram of
RAMIS is introduced [49, 5]. Based on the proposed working diagram, the most impor-
tant components in non-technical skill assessment (Fig. 1.7) are highlighted. For this, the
following definitions were used from IEC 80601-2-77, following the taxonomy of the IEC
60601-1 medical device core standard:

• Robotically Assisted (or Robot-Assisted) Surgical Equipment – RASE: ’Medi-
cal electrical equipment that incorporates programmable electrical medical system
actuated mechanism intended to facilitate the placement or manipulation of robotic
surgical instrument’

• Robotic surgical instrument: ’Invasive device with applied part, intended to be
manipulated by RASE to perform tasks in surgery’

• Interface conditions: Conditions that shall be fulfilled to achieve basic safety for
any functional connection between RAMIS and other medical electrical equipment
or non-Medical electrical equipment in the robotic surgery configuration

• Mechanical interface: Mounting surface on RAMIS that allows for attachment of
detachable accessories, components, or parts that are mechanically manipulated by
the RAMIS
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Fig. 1.8. Autonomous technical and non-technical surgical skill assessment input (endoscopic image and
kinematic data) and steps. All steps under skill assessment are covered in this PhD thesis.

• Endoscopic equipment: ’Energized endoscope together with its supply unit(s), as
required for its intended use’ [5, 49].

It is worth mentioning that the terminology of the ISO/IEC standard with respect to
RASE slightly differs from RAMIS, mostly due to the fact that in the ISO sense, the term
“robot” is defined with a much narrower meaning [50].

In Fig. 1.7, the components of RAMIS and the most important components in non-
technical skill assessment are shown. Based on the literature findings, non-technical skill
and workload can be assessed with the communication channel between the surgeon and
the assistants, and with the cognitive and personal resource skills of the operating room
crew, such as based on physiological signals or questionnaires, as it can be seen on the
image, the surgeon’s decisions are inseparable from the control loop of RAMIS systems.
It suggests that NTS and workload might be shown in objectively measurable parameters,
which means, non-technical skill assessment is not necessarily different from technical
skill assessment in terms of the implementing approaches [51]. This may ease objective,
automated non-technical surgical skill assessment in RAMIS. However, in the case of
RAMIS, not many studies examined this correlation.

1.2.2 System design
In my PhD work, I have been focusing on autonomous technical and non-technical sur-
gical skill assessment based on endoscopic image and kinematic data (Fig. 1.8). Sensory
data in RAMIS can be originated from clinical interventions, technical or non-technical
skill training, or even surgical subtask automation. The data should be properly collected
and synchronized. Under autonomous skill assessment, image feature extraction, surgical
tool segmentation, surgical tool pose estimation, motion analysis and skill classification
techniques were considered.
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Chapter 2

RESEARCH PROBLEM STATEMENT

Training and skill evaluation is crucial in the case of MIS, since it requires extensive prac-
tical skills as well, while surgical skill assessment is not yet part of the clinical practice.
With autonomous technology-supported approaches, non-biased, objective surgical skill
assessment can be achieved, furthermore, it does not require resources from human evalu-
ations.

While kinematic data-based skill classification in RAMIS can achieve close to 100 %
accuracy, but endoscopic images are more generally available in traditional MIS and in
training videos, therefore there is a need for RAMIS technical skill assessment examined
through endoscopic images. However, the accuracy of image-based surgical skill assess-
ment is still below the kinematic data-based solutions. Surgical skill assessment has to
be validated on an annotated database, but for the widely-used JHU–ISI Gesture and Skill
Assessment Working Set (JIGSAWS), image annotation is not available, thus it is hard to
validate image-based skill assessment.

• Problem 1: Image-based skill assessment’s accuracy should be improved, because
endoscopic camera images are the only widely accessible data. Semantic segmenta-
tion of the surgical tools on training videos should be available.

Non-technical surgical skill assessment is not a widely studied research domain, while
clinical failures in the OR may just as commonly originate from low non-technical skills
of the surgeon than the lack of technical skills.

• Problem 2: Non-technical skill needs training and evaluation. Non-technical surgi-
cal skills should be examined with autonomous techniques as well.

Automating the motion of the camera holder arm can decrease the cognitive workload
on the surgeon, while surgical skill assessment is essential in this cases for safety reasons.
However, image-based skill assessment can be complex if the camera is moving as well.

• Problem 3: Image-based skill assessment is necessary in the case of automated
camera motion for safety reasons. A solution should be provided to filter the camera
motion from the visual scene.

The problems identified above summarize three areas covering an important set of
interconnected issues, and address scientific problems relevant to the clinical practice.
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Chapter 3

IMAGE-BASED AUTOMATED
TECHNICAL SKILL ASSESSMENT
IN RAMIS

3.1 Methods for technical skill assessment in RAMIS

3.1.1 Manual assessment
In the case of manual RAMIS skill assessment, just like with traditional MIS, a team
of expert surgeons in the OR evaluates the execution of the intervention based on their
knowledge, the specific OR workflow and the expected outcome. This approach is easy
to implement, yet, very costly (in terms of human resource and effort). It may be accurate
averaged over multiple reviewers, but each individual assessment is quite subjective across
boards, and it may be heavily distorted by personal opinions, and influenced by the level of
expertise of that particular domain. The types of objective manual surgical skill evaluation
in the case of RAMIS are generic, procedure-specific and error-based [52]. The simplest
approach is the error-based manual assessment, because it only requires a typical error
detection during the procedures. Procedure specific techniques examine the skills what
needed in specific interventions. Generic manual skill assessment is the most complex,
which evaluate the global skills of the surgeons.

A typical approach of manual RAMIS skill assessment is not to quantify the over-
all skills, just to evaluate particular skills needed in specific procedures, or only measure
the errors made during the execution. In many cases, procedure-specific assessment is
required, where the assessment metric is created for a specific surgical procedure (such
as cholecystectomy, radical prostatectomy, etc.). Prostatectomy Assessment and Compe-
tence Evaluation (PACE) scoring is created for robot-assisted radical prostatectomy skill
assessment. PACE metric includes the following evaluation points [53]:

• bladder drop;
• preparation of the prostate;
• bladder neck dissection;
• dissection of the seminal vesicles;
• preparation of the neurovascular bundle;
• apical dissection, anastomosis.
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Cystectomy Assessment and Surgical Evaluation (CASE) is for robot-assisted radical
cystectomy procedures. CASE evaluates the skills based on eight main domains [54]:

• pelvic lymph node dissection;
• development of the peri-ureteral space;
• lateral pelvic space;
• anterior rectal space;
• control of the vascular pedicle;
• anterior vesical space;
• control of the dorsal venous complex;
• apical dissection.

In the case of PACE and CASE, surgical proficiency was represented in every domain
on a 5-point Likert scale, where 1 means the lowest and 5 means the highest performance
(the score meaning is defined in every domain, such as injuries). Beyond these two specific
methods, further scoring metrics for other interventions can be found in the literature [55,
56].

In most of the cases, any damage caused reflects the skills of the surgeons retrospec-
tively: such as blood loss, tissue damage, etc. Generic Error Rating Tool (GERT) is a
framework to measure technical errors during MIS; it was specifically created for gyneco-
logic laparoscopy [57]. The validation tests showed promising results for the usability of
GERT for objective skill assessment (its correlation to OSATS was examined) [58].

Generic manual assessment techniques evaluate the skills, based on the whole proce-
dure/training technique, considering several points of the surgery, but not considering a
specific technique. Global Evaluative Assessment of Robotic Skills (GEARS) was par-
ticularly created for robotic surgery, where expert surgeons assess the operator’s robotic
surgical skills manually. GEARS metric involves the assessment of the followings [35]:

• depth perception (from overshooting target to accurate directions to the right plane);
• bimanual dexterity (one from hand usage to using both hands in a complementary

way);
• efficiency (from inefficient efforts to fluid and efficient progression);
• force sensitivity (from injuring nearby structures to negligible injuries);
• robotic control skills (based on camera and hand positions).

The surgical experts score the performance on a five scale score system. GEARS is
a well-studied metric: validity tests and comparisons with GEARS can be found in the
literature [35, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69]. GEARS showed results for the
clinical usability and construct validity as well.

There are several modifications to the basic scoring skill assessment techniques, such
as specified GEARS for endoluminal surgical platforms, called ’Global Evaluative Assess-
ment of Robotic Skills in Endoscopy’ (GEARS-E) [70]. GEARS-E is similar to GEARS,
it measures depth perception, bimanual dexterity, efficiency, tissue handling, autonomy
and endoscope control, but it was created for Master and Slave Transluminal Endoscopic
Robot (MASTER) surgeries. GEARS-E is not yet widespread, because it is a relatively
new technique, but the pilot study showed correlations to surgical expertise when using
the MASTER.

Objective Structured Assessment of Technical Skills (OSATS) was originally created
for evaluating traditional MIS skills along with FLS in 1997. OSATS involves the follow-
ing evaluation points [71, 72]:
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• respect for tissue (used forces, caused damage);
• time and motion (efficiency of time and motion);
• instrument handling (movements fluidity);
• knowledge of instruments (types and names);
• flow of operations (stops frequency);
• use of assistants (proper strategy);
• knowledge of specific procedure (familiarity of the aspect of the operation).

OSATS has an adaptation to robotic surgery: the Robotic Objective Structured Assess-
ments of Technical Skills (R-OSATS) [73, 74]. The R-OSATS metric evaluates the skills
of the surgeon based on the depth perception/accuracy, force/tissue handling, dexterity
and efficiency. R-OSATS was tested typically with gynecology students, it has construct
validity, and in the tests, both the interrater and intrarater reliability were high [72].

3.1.2 Virtual Reality simulators
VR surgical robot simulators primarily support training, they can also be a great tool to
measure surgical skills objectively in a well-defined environment, since all motions, con-
tacts, errors, etc. can be computed in the VR environment. A typical RAMIS simulator
involves a master side construction and the virtual surgical task simulation. The master
side is responsible for studying the usage of a teleoperation system (master arm handling,
foot pedals, etc.), and to test the ergonomy. The simulation of the surgical task in the case
of a surgical robot simulator has to looking life-like and be clinically relevant. During
the training, the VR simulators often estimate the skills based on manual skill assessment
techniques (such as OSATS), but in an automated way.

Since the dVSS dominates the global market, VR simulators are also focusing on da
Vinci surgery. There are more than 5000 da Vinci simulators at the customer sites around
the globe [75]. At the moment, there are six different commercially available da Vinci sur-
gical robot simulators: the da Vinci Skills Simulator (Intuitive Surgical Inc.), dV-Trainer
(Mimic Technologies Inc., Seattle, WA), Robotic Surgery Simulator (RoSS, Simulated
Surgical Sciences LLC, Buffalo, NY), SEP Robot (SimSurgery, Norway), Robotix Men-
tor (3D systems (formerly Symbionix), Israel) and the Actaeon Robotic Surgery Training
Console (BBZ Srl, University of Verona [76]). A novel surgical simulation program is
the SimNow by da Vinci (Intuitive Surgical Inc.) [77]. SimNow involves surgical training
using virtual instruments, guided and freehand procedure simulations and tracking skills
and optimizing learning with management tools. In this section, the three most common
types of VR simulators are reviewed: the DVSS, the dV-Trainer and the RoSS (Fig. 3.1).

DVSS can be attached to an actual da Vinci (da Vinci Xi, X or Si), with the main
benefit that the surgeon can train on the actual robotic hardware, yet, it poses logistical
problems, since while a trainee uses the simulator, the robot cannot be used for surgery.
The dVSS contains the following surgical training categories [7]:

• EndoWrist manipulation;
• camera and clutching;
• energy and dissection;
• needle control;
• needle driving;
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• suturing;
• additional games.

The dVSS measures the skills based on the economy of motion, time to complete,
instrument collisions, master workspace range, critical errors, instruments out of view,
excessive force applied, missed targets drops, misapplied energy time. The simulator costs
about $85,000 [7, 35, 78, 79, 80, 81].

The dV-Trainer emulates the da Vinci master console, thus it operates separated from
the actual da Vinci robot. It contains additional training exercises to the dVSS [7]:

• troubleshooting;
• Research Training Network (VR exercises to match physical devices in use by the

research training network);
• Maestro AR (AR exercises that allow 3D interactions).

The dV-Trainer assesses skill with a very similar metric to the dVSS. In newer dV-
Trainer versions, an alternative scoring system is available, called ”Proficiency Based Sys-
tem”, which based on expert surgeon data, and the interpretation of the data is different,
furthermore the user can customize the protocol. The dV-Trainer costs about $96,000.

RoSS (as the dV-Trainer) is a stand-alone da Vinci simulator, involving numerous mod-
ules [7]:

• orientation module;
• motor skills module;
• basic surgical skills module;
• intermediate surgical skills module;
• blunt dissection and vessel dissection;
• hands-on surgical training module.

RoSS assesses the skills of the surgeon based on the camera usage, the number of left
and right tool grasps, the distance while the left and right tool was out of view, the number
of errors (collision or drop), the time to complete the task, the collisions of tools and tissue
damage. RoSS costs about $126,000.

In the literature, most papers dealing with surgical robot simulators are focused on the
curriculum and the technical layout, yet, in this work, the skill assessment and scoring part
is crucial.

3.1.3 Automated assessment
Surgical robotics provides a unique platform to evaluate surgical skills automatically.
RAMIS automated skill assessment does not need additional sensors to examine the sur-
geon’s movements, camera handling, focusing on the image, etc., because these events,
errors or movements can be recorded straight through the robotic control system. Auto-
mated assessment can be a powerful tool to evaluate surgical skills due to its objectivity,
furthermore it does not require human resources, however, in some cases, it can be hard to
implement these.

Two main types of automated skill assessment methods can be recognizable in the
literature: global information-based and language model-based skill assessment. Global
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Fig. 3.1. Virtual reality simulators for the da Vinci Surgical System [7, 8, 9]. A) da Vinci Skills
Simulator (Intuitive Surgical Inc.), b) dV-Trainer (Mimic Technologies Inc.), c) Robotic Surgery
Simulator (Simulated Surgical Sciences LLC), d) Robotix Mentor (3D systems), e) SEP Robot
(SimSurgery), f) Actaeon Robotic Surgery Training Console (BBZ Srl).

information-based automated skill assessment means that the surgical skill is evaulated
based on the whole procedure, based on the data of the endoscopic video, kinematic data,
or other additional sensor data. The other approach is to evaluate skills on the subtask level,
called language-model based skill assessment. Here, the first challenge is to recognize the
surgical subtasks (often called ”surgemes”), then create a model for the procedure, and
compare the models for skill assessment. Global skill assessment is easier to implement
compared to language model-based techniques, but language models can be more accurate,
and they are closer to the natural training (an expert will teach to the novice what was
wrong on the subtask level, such as the way to hold the needle in a suturing task).

Data collection for automated assessment

The development of automated RAMIS skill assessment methods requires solutions for
surgical data collection. The data – which correlates with the surgical skills – can be
kinematic, video or additional sensor-based (e.g., force sensor). It is not trivial to access
even training session data from RAMIS platforms. The dVSS has a read-only research
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Fig. 3.2. JIGSAWS surgical tasks: knot-tying, suturing and needle passing (captured from the
video dataset).

API (da Vinci Application Programmer’s Interface, Intuitive Surgical Inc.), but it is only
accessible to a very few chosen research groups. The da Vinci API provides a robust
motion data set and it can stream the motion vectors, including joint angles, Cartesian
position and velocity, gripper angle, joint velocity and torque data from the master side of
the dVSS, furthermore events such as instrument changes [82].

To collect kinematic and sensory data from the da Vinci for research usage, the da Vinci
Research Kit (DVRK) is a more accessible tool. DVRK is a research platform containing
a set of open source software and hardware elements, providing complete read and write
access to the first generation da Vinci [83]. DVRK is programmable via Robot Operating
System (ROS) open source library [84]. The DVRK community is relatively small, but
growing with around 40 DVRK sites currently [85].

While most of the da Vinci’s have remote access and data storing enabled, due to
legal and liability causes, clinical datasets are not available widely. In this case, anno-
tated databases can provide input to RAMIS skill evaluation research. JHU-ISI Gesture
and Skill Assessment Working Set (JIGSAWS) (developed by the LCSR lab at JHU and
Intuitive) is an annotated database for surgical skill assessment, collected over training
sessions [86]. JIGSAWS contains kinematic data (Cartesian positions, orientations, ve-
locities, angular velocities and gripper angle of the manipulators) and stereoscopic video
data captured during dry lab training (suturing ST, knot-tying NT and needle-passing NP).
The dataset recorded on a dVSS involving surgeons with different expertise level (based
on a manual evaluation technique). Beyond the manual skill annotations, JIGSAWS also
includes annotations about the gestures (’surgemes’).

Another approach is to capture surgical data with an additional data collecting device.
A novel approach for da Vinci data collection, the dVLogger was developed in 2018 by
Intuitive Surgical Inc. The dVLogger directly captures surgeons motion data on the dVSS.
DVLogger can be easily connected to the da Vinci’s vision tower with ethernet connection,
and it records the data at 50 Hz. DVLogger provides the following informations from the
robot [10]:

• kinematic data (such as instrument travel time, path length, velocity);
• system events (frequency of master controller clutch use, camera movements, third

arm swap, energy use);
• endoscopic video data.

DVLogger can be a powerful tool in surgical skill assessment studies, due to its easy
usage enabling the data collection for everyone, during live surgeries as well, however, it
is a novel recording device, thus it is not widely recognized yet.
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Fig. 3.3. A visual example of robot trajectories in case of a novice and an expert surgeon during
robot-assisted radical prostatectomy (red: dominant instrument, green: non-dominant instrument,
black: camera) [10].

SurgTrak (created by the University of Minnesota and University of Washington) is an
additional hardware and software set which can be used for the da Vinci as well [87]. With
SurgTrak, the endoscopic data can be captured from the DVI output of the da Vinci master
side with an Epiphan DVI2USB device. The surgical instruments’ position and orientation
can be recorded with a 3D Guidance trakSTAR magnetic tracking system. Furthermore,
grasper and wrist position is achievable with SurgTrak.

The above data collection techniques are useful for capturing kinematic and video data,
but in some cases, other devices/sensors are needed to evaluate surgical skills with spe-
cific algorithms. Force sensors are often used in the field of surgical skill assessment. It
is possible to estimate the used forces during the training based on the motor currents,
but due to the construction of the da Vinci, data can be very noisy. A more popular ap-
proach is when an additional force sensor is used, such as developed at the University of
Pennsylvania [88]. In this case, accelerometers were placed on the da Vinci master arms
(which measured instrument vibrations), and a training board with a force sensor, which
measured the forces during different types of training. They showed correlation between
the measured data and the skill level.

Global information-based skill assessment

One approach for automated RAMIS skill assessment is to examine the whole procedure
based on kinematic/video/additional sensor data. These methods are easier to implement
than language model-based techniques, because they do not require the segmentation of
the whole procedure (see details below). While global information-based methods are
not sensitive to the performance quality of specific gestures, they can be as effective as
language model-based techniques. There is an obvious correlation between the surgical
skills and the kinematic data (Fig. 3.3), thus this is the most well-studied area in global
information-based skill assessment [89, 90, 91, 92, 93, 11, 94, 95, 96, 97], but can find
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Fig. 3.4. Flow diagram for automated surgical skill assessment proposed by Zia et al. [11].

video, additional sensor-based [88, 98, 99], and the comparisons of several inputs [82, 100]
automated techniques can be found as well. Global information-based skill assessment is
not as deeply studied as language model-based methods, in general.

For the global methods, the classification of the input data is needed. A summary
of these can be found in [11] (Fig. 3.4). The raw data (which can be any kind of data:
endoscopic image, force, kinematic, etc. – in the figure you can find a specific example
for kinematic-data based assessment) have to be processed with some kind of feature ex-
traction technique, and in some cases, dimensionality reduction is needed as well. The
processed data can be classified, and the skill can be predicted based on the extracted
features from the data.

In [11], a motion-based automated skill assessment approach can be found. Their input
was the JIGSAWS dataset. They used 4 types of kinematic holistic features: sequential
motion texture, Discrete Fourier Transform, discrete cosine transform and approximate
entropy. After the feature extraction and dimensionality reduction, they classified the data
and predicted the skill score. The skill scoring was performed with a weighted holistic
feature combination technique, which means that different prediction models were used
to produce a final skill score. With this method a modified-OSATS score and a Global
Rating Score was estimated. The results showed more accuracy than Hidden Markov
Model-based solutions [11]. For more approaches, see Table 3.1.

Language model-based skill assessment

A surgical procedure model can be built up with different motion granularity. A surgi-
cal procedure (such as Laparoscopic cholecystectomy) is built from tasks (e.g., exposing
Calot’s triangle), which are built from subtasks (e.g., blunt dissection), which are built
from surgemes (grasp), which can be translated to the components in the robotic domain
(motion primitives) (Fig. 3.5). Global skill assessment methods approach the skill evalu-
ation from the highest procedure/task level, thus not adverting the fact that surgical tasks
are built from several, sometimes very different surgemes. These surgemes are not equally
easy or complicated to execute, and even if a clinician believed to have intermediate skills
based on a global skill assessment technique, they can be excellent/poor in just one, but
very important surgeme and vice versa. Language model-based surgical skill assessment
aims to assess surgical skills on the surgeme level, thus it requires three main steps: task
segmentation, gesture recognition and gesture-based skill assessment. This approach has
the further advantage that with the models defined, the transitions between the surgemes
can be studied, and benchmark those as well. Language model-based skill assessment
has been considered to be a cornerstone of the emerging field of Surgical Data Science
(SDS) [101].
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Fig. 3.5. A surgical procedure built from different levels [12]. Language model-based RAMIS
skill assessment techniques typically evaluate the skills on the surgeme level.

It was the Johns Hopkins University Laboratory for Computational Sensing and Robotics
(JHU LCSR) group who first proposed surgeme-based skill assessment [102], discrete
Hidden Markov Models (HMM) were built for task and for surgeme level as well to assess
skill. In practice, skill evaluation was based on a model built from annotated data (known
expertise level), and this model tested against the new user. To create a model for user mo-
tions, they had to identified the surgemes with feature extraction, dimensionality reduction
and classifier representation techniques. After that, the two models were compared. To
train the discrete HMMs, they used vector quantization. Their method worked with 100 %
accuracy using task level models and known gesture segmentation, at 95 % with task level
models and unknown gesture segmentation, and at 100 % with the surgeme level models
in correctly identifying the skill level.

The input of language model-based skill assessment methods can be kinematic data [103,
104, 102, 105, 106, 107, 108, 109, 110, 111], video data [112] or both [113, 114, 115, 116,
117]. In the literature, surgical activity/workflow segmentation can be found as well [118,
119, 120, 121, 122, 123, 124, 125]. For the details of the state of the art, see Table 3.1.
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TABLE 3.1: Automated surgical skill assessment techniques in RAMIS. Used abbrevia-
tions: API – Application Programming Interface, HMM – Hidden Markov Model, LDA –
Linear Discriminant Analysis, GMM – Gaussian Mixture Model, PCA – Principal Com-
ponent Analysis, SVM – Support Vector Machines, LDS – Linear Dynamical System,
NN – Neural Network.

Aim Input data Data collec-
tion Training task Technique Ref.

kinematic data-based
skill assessment

completion time, total
distance traveled, speed,
curvature, relative phase

da Vinci API
dry lab (bimanual carry-
ing, needle passing, su-
ture tying)

dependent
and indepen-
dent t-tests

[89]

framework for skill
assessment of RAMIS
training

stereo instrument video,
hand and instrument mo-
tion, buttons and pedal
events

da Vinci API
dry lab (manipulation, su-
turing, transection, dis-
section)

PCA, SVM [82]

examine the effect of tele-
operation and expertise
on kinematic aspects of
simple movements

position, velocity, accel-
eration, time, initial jerk,
peak speed, peak acceler-
ation, deceleration

magnetic
pose tracker dry lab (reach, reversal) 2-way

ANOVA [90]

longitudinal study track-
ing robotic surgery
trainees

basic kinematic data,
torque data, events from
pedals, buttons and arms,
video data

da Vinci API
dry lab (suturing, manip-
ulation, transection, dis-
section)

SVM [100]

generate an objective
score for assessing skill
in gestures

basic kinematic and video
data JIGSAWS dry lab (suturing, knot-

tying) SVM [115]

discriminate expert and
novice surgeons based on
kinematic data

completion time, path
length, depth percep-
tion, speed, smoothness,
curvature

da Vinci API dry lab (suturing)
logistic re-
gression,
SVM

[91]

instrument vibrations-
based skill assessment

completion time, instru-
ment vibrations, applied
forces

da Vinci API
dry lab (peg transfer, nee-
dle pass, intracorporeal
suturing)

stepwise
regression [88]

automatic skill evaluation
based on the contact force

contact forces, robot arm
accelerations, time

da Vinci and
Smart Task
Board

peg transfer
regression
and classifica-
tion

[98]

skill assessment based on
instrument orientation

time, path length, angular
displacement, rate of ori-
entation change

da Vinci Re-
search Kit dry lab (needle driving) 2-way

ANOVA [92]

discriminate expert and
novice surgeons based on
kinematic data

completion time, path
length, depth perception,
speed, smoothness, cur-
vature, turning angle,
tortuosity

da Vinci API dry lab (suturing, knot-
tying)

k-Nearest
Neighbor,
logistic re-
gression,
SVM

[93]

skill score prediction

sequential motion tex-
ture, discrete Fourier
transform, discrete
cosine transform and
approximate entropy

JIGSAWS dry lab (suturing, knot-
tying, needle passing)

nearest neigh-
bor classifier,
support vector
regression

[11]

objective skill level
assessment based on
metrics associated with
stylistic behavior

basic kinematic and phys-
iological data

limb inertial
measurments
unit, elec-
tromagnetic
joint posi-
tion tracker,
EMG, GSR,
IMU, cam-
eras

da Vinci Skills Simulator
tasks (ring and rail, suture
sponge)

crowd
sourced
analysis

[99]

characterization of open
and teleoperated suturing
movement

speed, curvature, torsion
of movement trajectories

da Vinci Re-
search Kit,
JIGSAWS

dry lab (suturing)

fitting the
one-sixth
power law,
types of
ANOVA

[95]

assess expertise and rec-
ognize surgical training
activity

basic kinematic data JIGSAWS dry lab (suturing, knot-
tying, needle-passing)

multi-output
deep neu-
ral network
architecture

[94]
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Aim Input data Data collec-
tion Training task Technique Ref.

evaluate skills based on
kinematic data

time, errors, movement
speed, jerkiness, trajec-
tory redundancy, target
scoring, trajectory volatil-
ity, max deviation

MicroHand
S, magnetic
sensor

dry lab (pick and place,
ring threading)

one-way
ANOVA [96]

evaluate skills based on a
deep learning model basic kinematic data JIGSAWS dry lab (suturing, knot-

tying, needle passing)
deep convolu-
tional NN [97]

gesture classification basic kinematic data da Vinci API dry lab (suturing)

local feature
extraction,
LDA, Bayes
classifier

[103]

gesture classification and
recognition basic kinematic data da Vinci API dry lab (suturing)

LDA, straw-
man GMM,
3-state HMM

[104]

compare task versus sub-
task basic kinematic data da Vinci API dry lab (suturing) vector quanti-

zation, HMM [102]

gesture classification
basic kinematic data and
video contextual cues (su-
ture line deformations)

da Vinci API dry lab (suturing)

HMM, high-
order polyno-
mial fitting to
the extracted
suturing line

[113]

gesture classification and
recognition basic kinematic data da Vinci API dry lab (suturing) LDA, HMM [105]

gesture classification basic kinematic data JIGSAWS dry lab (suturing, knot-
tying, needle passing) sparse HMM [106]

gesture classification
video features (image in-
tensities, image gradients,
optical flow)

JIGSAWS dry lab (suturing, needle
passing, knot-tying)

LDS, bag-
of-features,
multiple ker-
nel learning

[112]

gesture classification
basic kinematic data and
video features (Space-
Time Interest Points)

JIGSAWS dry lab (suturing, needle
passing, knot-tying)

LDS, bag of
features, mul-
tiple kernel
learning

[114]

gesture classification basic kinematic data

JIGSAWS,
da Vinci
Surgical
System

dry lab (suturing)

descriptive
curve coding,
common
string model,
SVM

[107]

gesture classification basic kinematic data JIGSAWS dry lab (suturing, needle
passing, knot-tying)

Shared
Discrimina-
tive Sparse
Dictionary
Learning,
SVM, HMM

[108]

providing individualized
feedback to surgical
trainees

basic kinematic data n/a dry lab (suturing, knot-
tying)

automatic
identification
of motifs
in the tool
motion signal

[119]

segmentation of surgical
tasks into smaller phases

basic kinematic and video
data JIGSAWS dry lab (suturing, knot-

tying)

binary clas-
sifier, crowd-
sourced
segment
ratings

[120]

unsupervised segmenta-
tion of surgical tasks into
smaller phases

basic kinematic (position)
and video (object grasp
events and surface pene-
tration) data

da Vinci Re-
search Kit

dry lab (pattern cutting,
suturing, needle passing)

milestone
learning with
Dirichlet Pro-
cess Mixture
Models

[121]

recognizing surgical ac-
tivities basic kinematic data JIGSAWS dry lab (suturing)

Recurrent
Neural
Network-
based su-
pervised
learning

[123]
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Aim Input data Data collec-
tion Training task Technique Ref.

gesture classification and
recognition basic kinematic data Raven-II,

Sigma 7 peg transfer

unsupervised
trajectory
segmentation,
k-Nearest
Neighbors,
SVM

[109]

describe differences in
task flow

basic kinematic and video
data da Vinci API dry lab (suturing, knot-

tying)

hierarchical
semantic
vocabulary

[124]

gesture classification basic kinematic and video
data JIGSAWS dry lab (suturing, knot-

tying, needle passing)

HMM,
Sparse HMM,
Markov
semi-Markov
Conditional
Random
Field, Skip-
Chain CRF,
Bag of spa-
tiotemporal
Features,
LDS

[116]

temporal clustering of
surgical activities

basic kinematic and video
data n/a

live surgery (two-handed
robotic suturing, uterine
horn dissection, suspen-
sary ligament dissection,
running robotic suturing,
rectal artery skeletoniza-
tion and clipping)

Hierarchical
Aligned Clus-
ter Analysis,
Aligned Clus-
ter Analysis,
Spectral
Cluster- ing,
GMM

[125]

gesture classification and
recognition

basic kinematic and video
data

da Vinci
SKILLS
Simulator,
SIMIMo-
tion motion
capture
system

simulated tasks (peg tran-
fer, pick and place)

Decision Tree
Algorithm
Model

[117]

gesture classification basic kinematic data JIGSAWS dry lab (suturing, needle
passing)

Transition
State Clus-
tering, uses
hierarchical
Dirichlet Pro-
cess GMM

[110]

gesture classification basic kinematic data

JIGSAWS/RAVEN-
II, Sigma.7,
leap mo-
tion de-
vice/dataset
of micro-
surgical
suturing
tasks cap-
tured using
a dedicated
robot

dry lab (suturing, needle
passing, knot-tying/peg
transfers/micro-surgical
suturing)

Symbolic
Aggregate
approXima-
tion, Bag of
Words, vector
space model

[111]

action segmentation and
recognition

kinematic (end effector
positions, velocity, grip-
per state, skip-length fea-
tures) and video (distance
to the closest object part
from each tool, relative
position of each tool to
the closest object part)
data

JIGSAWS dry lab (suturing, needle
passing, knot-tying)

Skip-Chain
Conditional
Random
Field, De-
formable Part
Model

[118]
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Fig. 3.6. The teleoperational dVSS with the surgeon-side master console, the vision tower and the patient-
side cart with the articulated tools of the Patient-Side Manipulators (PSMs). The articulated tool has 6+1
Degrees of Freedom (DoF): insertion, external yaw, external pitch, roll, pitch, yaw and grip. The tools are
visualized by an endoscopic camera.

3.2 Articulated tool pose estimation for autonomous image-
based surgical skill assessment

In the case of classical MIS, or the widely available training and surgical videos, only 2D
endoscopic image is accessible. In this Thesis, a tool pose estimation method for technical
surgical skill assessment is introduced. The main reason for using generated image-based
positions, is that kinematic data-based solutions typically provide much higher accuracy
(up to 100 %) for skill classification, compared to endoscopic image-based solutions. The
idea behind this study is that if accurate tool pose can be generated from the images, it can
be a good alternative of kinematic data-based solutions.

The da Vinci Surgical System’s tools have 6+1 Degrees of Freedom (DoF): insertion,
external yaw, external pitch, internal yaw, internal pitch, roll and grip (Fig. 3.6). On the
endoscopic image, the articulated surgical tool’s 3 segments are visualized. The PSM’s
Tool Center Point (TCP) is at the gripper frame (where the yaw axis crosses the middle
segment), and the orientation refers to the tooltip’s orientation (in case of the tool is open,
the orientation is the virtual middle point between the tooltips). For optimal tool pose
estimation then, the TCP and the tooltip(s) have to be detected on the endoscopic image.
The codes of this work can be found at https://github.com/ABC-iRobotics/end2kin.
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Fig. 3.7. Autonomous joint detection of a RAMIS tool (EndoWrist Large Needle Driver) on 2D endoscopic
images. A) Original RGB image from the Synthetic MICCAI dataset; b) Ground truth; c) Distance trans-
formed image from the instrument ground truth data; d) Skeleton of the surgical intrument; e) Width values
along the skeleton’s x axis, based on the distance transformed image. Blue line represents the original width
data, orange line is the smoothed width data, and the green dot represents the first joint of the surgical tool
based on prominence-based peak detection; f) Dots represents the joints and the tip points of the surgical
instruments. From these 9 points, 6 DOF pose of the tool can be estimated.

3.2.1 Joint detection on RAMIS endoscopic images
At the moment, there are two main options to detect the TCP and the tooltip on an image:
with classical image processing methods and Artificial Intelligence-based approaches (es-
pecially supervised Neural Network-based solutions). In the case of the first category, im-
portant features of the images are pre-defined, on the other hand, supervised NNs can learn
these features from labeled samples. Since robotic surgical tools in most of the cases have
well-defined shape features, the proposed RAMIS tool joint detection approach is based
on classical image processing methods. Furthermore, in this thesis, tool joint detection
and pose estimation are handled by a separate problem from surgical tool segmentation,
thus all of the proposed method were tested on the Synthetic MICCAI ground truth data
(Section 3.2.3). With a proper tool segmentation method, the proposed pose estimation
approach can be done.The steps of the joint detection algorithm are the followings: first,
on the captured ground truth data the distance transform of the mask can be calculated
(Fig. 3.7). The distance transform is a derived representation of the image, where the
pixel values represent the Euclidean distance from the nearest zero pixel. The skeleton of
the tool can be calculated from morphological operations. By the product of the distance
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transformed image and the skeleton, the widths of the surgical tool can be calculated along
the skeleton. The assumption is that at the joints of the tools this product is less compared
to other segments of the surgical tool due to its morphological features. However, this
is a strong shape feature in most of the cases, for the first frame, the joints have to be
visible, furthermore, there are tools for the dVSS where this shape feature is not appli-
cable. Nevertheless, the thinner joint widths appear in most of the dVSS tools (blades,
scissors, forceps, graspers, etc.). The first joint can be detected then based on width, with
prominence-based peak detection after a smoothing filter. The second joint position can
be detected based on the width as well. This can be done realtime, and in parallel the tools
are tracked with sparse Optical Flow (Kanade–Lucas–Tomasi method). Optical Flow rep-
resents the real-world motion in the image scene. The pose estimation method requires 6
points on the image what the model can be fitted – it means, the two joint middle point is
not enough for proper pose estimation. For this, the contour of the tools was calculated,
and the nearest contour points from the joint middle points were found based on the Eu-
clidean distances. From this, nine points on the two tool segments were detected; based on
which the two segments’ pose can be calculated. For all image frames (except the first),
with Optical Flow the points’ position can be validated. If more PSMs are visualized on
the image, with connected components they can be handled separately.

3.2.2 Pose estimation
For tool pose estimation, due to robustness, the aim was to use a solution which does
not require knowledge about the kinematic data, or a complete 3D model. Because of
this, perspective n point (PnP) transformation was used for surgical tool pose estimation.
For enough accuracy PnP requires at least six points physical positions on a model, and
if these points can be properly found on the 2D image, this physical model can be fitted
and the pose can be calculated. For this, camera calibration and distortion coefficients
are necessary as well (however, PnP can provide acceptable results without it). PnP is
responsible for calculating the pose (rotation and translation) between the world frame
and the camera frame from N (N ≥ 3) points. PnP problem can be formulated as using
the pinhole camera model: [pi

1

]
= C[R, t]

[
Pi

1

]
, (3.1)

where C is the camera calibration matrix, R is the rotation matrix, t is the translational
vector, pi is the 2D pixel coordinates and Pi is the corresponding 3D points. Based on
the correspondence between pi and Pi, t and R can be calculated [126]. For this, in this
work, iterative PnP solving method was used, where Levenberg–Marquardt minimization
scheme was employed.

In this work, the 6 point model was generated for the EndoWrist Large Needle Driver
for both segments, what was used in Synthetic MICCAI dataset. This means 9 points: 3
for the first joint, 3 for the second joint and 3 for the tooltip (Fig. 3.7). It was necessary,
because the first joint detection is very stable, but for orientation, the points of the second
joint and the tooltip are necessary. These 3D points can be found on the 2D image with
the proposed joint detection method. Further, translation and rotation of the tool can be
calculated with PnP iterative method.

46



For the validation, joint angle representation of the Synthetic MICCAI dataset had
to be converted to Cartesian coordinates, which was done with the DVRK package [12].
Based on the generated 3D points, with 3D rigid transformation the camera frame can be
transformated to the robot’s base frame. Since PSM TCP is not exactly on the second joint
detected by the image processing method (due to the shape features of the tool), an offset
should be added to the calculated position. With this, the generated and the original pose
can be compared.

3.2.3 Synthetic MICCAI dataset
To test and validate the autonomous joint detection and pose estimation, a RAMIS video
dataset was necessary, which is annotated not only with the segmentation ground truth, but
the robot kinematic data as well. At the moment, Synthetic MICCAI dataset is the only
RAMIS dataset annotated with respect to these two data [127]. The Synthetic MICCAI
dataset (created by University College London) was recorded with the DVRK. In Synthetic
MICCAI, EndoWrist Large Needle Drivers were used to perform a surgical movement.
Kinematic data is represented with joint angles, 7xN matrix data for Patient Side Manipu-
lators (PSMs) and 4xN for Endoscope Camera Manipulator (ECM). The rows refer to the
joints and the columns represent consecutive time stamp. Synthetic MICCAI contains 15
scenario with different tool movements, each scenario contains 300 video frames. Videos
were created with 30 Frame per Seconds (FPS).

3.2.4 JIGSAWS
Since Synthetic MICCAI dataset contains video and kinematic data of RAMIS scenes, fur-
thermore it is annotated with the segmentation ground truth, in the meanwhile it does not
contain the skills of the surgeons who performed the surgical motions, it is necessary to use
a dataset where surgical skill annotations are available. JIGSAWS is a complex RAMIS
skill assessment dataset, widely used for testing endoscopic image-based and kinematic
data-based surgical skill assessment methods [86], see Section 3.1.3. JIGSAWS was cap-
tured using the dVSS, with 8 surgeons at different skill levels (expert, intermediate and
novice), while performing well-known surgical training tasks (knot-tying, needle passing
and suturing) with EndoWrist Large Needle Drivers. JIGSAWS not only contains the kine-
matic and stereo video data, but the skill level of the surgeons and the gesture annotations
as well. While JIGSAWS’s video data is available, it is not annotated with the instrument
segmentation ground truth beyond the image frame resolution and the general video qual-
ity is poor. Because of these reasons, the kinematic data of JIGSAWS was only used in
this work modified with the detected accuracy, to simulate image-based skill assessment.

3.2.5 Natural log of Dimensionless Jerk and Spectral Arc Length
Motion smoothness, what correlates with the precision and control of the motion, is a com-
mon feature of human motion studies. In surgical skill assessment, motion smoothness is
shown to be an effective and sensitive parameter to classify the skills of the surgeons [128].
The goal of this work is to provide an endoscopic image-based generated tool pose, which
can be utilized for automated image-based surgical skill assessment—and since motion
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smoothness is an often-used parameter, the error of motion smoothness should not be sig-
nificant.

If the motion is smooth, its acceleration does not have any discontinuities, which can
be determined by derivative of the acceleration—it is called jerk, which is often examined
in human motion studies. To eliminate jerk variations’ (pure, dimensionless) inconsistency
and wide variability, natural log of dimensionless jerk (LDLJ) was proposed [129].

For LDLJ, elapsed time (T) has to be calculated, where tend and tentry are the end and
entry times, respectively:

T = tend − tentry. (3.2)

Velocity profile (3.3) is based on the x, y and z directions of the movement velocity:

X =
√

x2 + y2 + z2. (3.3)

Path length (PL) (3.4) is calculated from the sum of Euclidean distances between points
traversed:

PL =

∫ tend

tentry

dX

dt
. (3.4)

Then LDLJ can be calculated, which is the natural log of jerk integrated and squared:

LDLJ = −ln

∣∣∣∣∣ T 5

PL2

∫ tend

tentry

(
d3X

dt3

)2
∣∣∣∣∣ . (3.5)

The other motion smoothness parameter, which is robust to noise is proposed, called
Spectral Arc Length (SPARC) [130]. SPARC is aimed to measure smoothness based
on the fact smooth motion yields small magnitudes of low frequency profiles and vice
versa. SPARC is derived from the arc length of the amplitude of the frequency-normalized
Fourier magnitude spectrum of the velocity profile. SPARC is more robust regarding noise,
compared to LDLJ.

SPARC = −
∫ ωc

0

( 1

ωc

)2

+

(
dÂ(ω)

dω

)2
 1

2

dω, (3.6)

Â(ω) =
A(ω)

A(0)
, (3.7)

where A(ω) is the Fourier magnitude spectrum of the acceleration signal a(t), Â(ω) is the
normalized magnitude spectrum.

3.2.6 Results
Tool pose estimation and motion smoothness

To test the accuracy of the pose estimation method, Mean Squared Error (MSE) between
the PSM3 (left PSM) kinematic data and the estimated image-based kinematic data was
calculated. Furthermore, the generated 3D position trajectories’ smoothness was calcu-
lated with the natural log of Dimensionless Jerk (LDLJ) and Spectral Arc Length (SPARC)
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based on the velocity profile. Since Synthetic MICCAI dataset contains not only PSM3
movement videos, but PSM1 and PSM3+PSM1 data as well, in this work, for simplicity,
only PSM3 motion was considered. Furthermore, the data were cut when PSM3 was cov-
ered by PSM1, or did not show the TCP well at the beginning of the video. Based on this
assumptions, 8 videos were chosen to be examined, wherein 1906 frames were tested for
accuracy.

The MSE for translation x, y, z and rotation x and y were calculated for all scenarios
(Table 3.2, Fig. 3.9). The minimum translation MSE (which is the maximum accuracy) in
the case of x direction was 1.92 mm in the case of video #1, in y direction minimum error
was 1.52 (video #1), and 1.19 mm for z direction (video #2). The maximum error was
not greater than 6.44 mm, 7.60 mm and 6.35 mm for x, y and z directions, respectively
(Fig. 3.8). Due to the fact that the proposed silhouette-based approach does not provide
information of roll direction of the tool’s rotation, this error was not calculated. However,
this can significantly decrease the rotation accuracy along x and y axes (ϕ, θ) as well:
the best-case ϕ error was 42.38◦ and 7.54◦ for θ, but there were MSE observations up to
125.76◦ as well. Based on these findings, 3D position estimation can provide accurate
results, which can be a good input for endoscopic image-based skill assessment methods,
but rotation estimation is not accurate enough to use it for such assessments. Because of
this, only the 3D position used for further examinations.

TABLE 3.2
TRANSLATION AND ROTATION MEAN SQUARED ERROR OF THE ESTIMATED 5 DOF POSE ON THE

EXAMINED VIDEOS.

Video Mean Squared Error
# T. x [mm] T. y [mm] T. z [mm] R. ϕ [°] R. θ [°]
1 1.92 1.52 2.21 84.46 7.54
2 4.04 1.47 1.19 49.02 64.40
6 4.12 2.65 2.33 41.38 13.36
7 4.74 5.11 4.22 123.34 49.95
9 3.51 3.99 3.86 59.15 47.55

11 5.83 5.02 6.15 88.38 31.05
12 3.15 7.60 5.28 125.76 63.45
14 6.44 6.46 6.35 118.92 44.35

To analyze motion smoothness, the generated image-based and the original kinematic
data were segmented to smaller portions of motion data. Since the Synthetic MICCAI
dataset does not contain typical surgical tasks (such as suturing), decomposition of the
videos for smaller surgical motions (such as surgemes) was not applicable, thus every
motion what performed in 25 frames was considered. The MSE (Table 3.3) for LDLJ
was 0.00 in the best case and 2.16 for the worst. In the case of SPARC, the best MSE
result was 0.00 and 1.51 the worst. Since these results (besides 0.00) are not easy to
understand, Wilcoxon signed rank tests were ran on robotic and image-based LDLJ and
SPARC motion segments, which compared the original and generated trajectories. The
results showed no significant difference between the original and the calculated LDLJ and
SPARC results, and since skill classification studies showed significantly different LDLJ

49



Fig. 3.8. Absolute translation error x, y and z components for all test video sequences involved in the
assessment from the Synthetic MICCAI dataset.

and SPARC results, it can be concluded that these results are good enough to use the
generated data for skill assessment.
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Fig. 3.9. Generated trajectories by image-based surgical tool pose estimation and velocity components of
it. First row: one test video’s three trajectory segments (a – c); blue: image-based positions, red: kinematic
data-based positions; Second row: velocity x, y and z components (d – f) of the same motion. The similarity
of the trajectories were proven with 3D position accuracy and velocity-based motion smoothness metrics.

Skill classification on the JIGSAWS dataset

As it was mentioned earlier, JIGSAWS endoscopic data does not have enough image qual-
ity or ground truth data for this proposed tool pose estimation method, however, my work
was focusing on ground truth data and surgical tool segmentation for the JIGSAWS in
the following sections. After the tool pose estimation accuracy was calculated, similar
noise was added to JIGSAWS kinematic data for suturing, knot-tying and needle passing
surgical tasks. In JIGSAWS, novice and expert surgeon’s data were used for skill classi-
fication. Because the estimated 3D position data was more precise than the 6 DoF pose
estimation, it was only used for skill classification. From JIGSAWS, orientation and other
kinematic data (velocity, acceleration, etc.) were excluded. Because only one PSM’s data
was examined here, from JIGSAWS only PSM3’s 3D position data was used for skill
classification [131].

For skill classification of the 3D position data, a Random Forest-based time series
supervised classifier was used. Time Series Forest (TSF) classifier is an interval-based
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TABLE 3.3
NATURAL LOG DIMENSIONLESS JERK (LDLJ) AND SPECTRAL ARC LENGTH (SPARC) MEAN

SQUARED ERROR (MSE).

Video Mean Squared Error
# LDLJ SPARC
1 1.98 1.63
2 0.00 0.00
6 2.05 0.76
7 2.11 0.87
9 1.83 0.44
11 1.28 1.51
12 1.13 0.86
14 2.16 0.89

classifier, which splits the series into intervals and then extract mean, standard deviation
and slope features. The decision tree then trained to these features, and repeat the steps
until the expected trees have been built [132]. 75 % of the data was randomly selected
for training and 25 % for testing. Random noise was added to 3D position data with
0 mm mean and 4.22 mm, 4.23 mm and 3.95 mm standard deviation for x, y and z direc-
tions, respectively, which was the mean error of the proposed surgical tool pose estimation
method. From sliding window cross validation, mean accuracy was 89.33 %, 76.66 % and
75.00 % for knot-tying, suturing and needle passing, respectively. These three surgical
tasks-based skill classification accuracies are commonly different from each other (needle
passing shows typically the best classification performance), in this case, probably because
of the only one tool-based classification, knot-tying showed the highest accuracy. While
it outperformed the solution proposed in Chapter 5 in knot-tying (Table 3.4), it provided
lower accuracy for suturing and needle-passing.

3.2.7 Conclusion of surgical tool pose estimation
In this section, a surgical tool pose estimation technique was introduced for the da Vinci
Surgical System’s articulated tools, targeting an algorithmic support for autonomous tech-
nical skill assessment. The tool pose estimation was performed on 2D endoscopic images,
based mainly on shape features and iterative Perspective n Point transformation method.
The introduced technique was validated on the Synthetic MICCAI dataset, where it pro-
vided 4.22 mm, 4.23 mm and 3.95 mm x, y, z RMSE average accuracy of 8 videos, which
contained 1906 frames. The smoothness of the generated trajectories were examined with
the natural log of Dimensionless Jerk and Spectral Arc Length, where there were no signif-
icant differences between the image-based and the original trajectories. The experienced
noise was then added to JIGSAWS kinematic data, and skill classification was done with
time series forest classifier. The results were 76.66 %, 75 % and 89 % accuracy for su-
turing, needle-passing and knot-tying, respectively. Based on these findings, image-based
surgical skill assessment can be an acceptable alternative to kinematic data-based skill
assessment in the case of MIS.
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TABLE 3.4
COMPARISON OF THE RESULTS TO THE STATE OF THE ART. METHODS LISTED HERE USED JIGSAWS
2D ENDOSCOPIC IMAGE DATA AS INPUT, EXCEPT THE PROPOSED SOLUTION (NAGYNÉ ELEK ET AL.).

BLUE DENOTES THE BEST RESULTS. STIP: SPACE TEMPORAL INTEREST POINTS, IDT: IMPROVED

DENSE TRAJECTORY, RESNET: RESIDUAL NEURAL NETWORK.
Author (Year) Method Suturing Needle-Passing Knot-Tying

Ming et al. (2021) STIP[133] 79.29 % 87.01 % 72.57 %
Ming et al. (2021) iDT[133] 76.79 % 83.81 % 76.65 %
Lajkó et al. (2021) ResNet[134] 81.89 % 84.23 % 83.54 %

Nagyné Elek et al. (2022) hybrid 76.66 % 75.00 % 89.33 %

3.3 Surgical tool segmentation on the JIGSAWS dataset
As it was mentioned in Section 3.2.4, JIGSAWS dataset is the most widely used dataset
for surgical skill assessment, yet, there has been no solution for semantic segmentation of
the surgical instruments in it. In this Section, different Neural Networks were examined
and applied to segment surgical tools in the JIGSAWS dataset aiming to lead image-based
surgical skill assessment. Image processing techniques have some advantages over NN-
based methods, since the latter needs a huge amount of data for training. Moreover, NNs
are highly dependent on the data on which they were trained. The codes of this work are
available at https://github.com/ABC-iRobotics/SurgToolSegJIGSAWS.

3.3.1 Ground truth generation
Optical Flow is a frequently used algorithm for object tracking and movement detec-
tion [135]. It creates a 2D vector space, where each vector represents the movement of a
pixel between two frames. The main assumption of the algorithm is that the intensities of
an object’s pixels do not change significantly in between consecutive frames. Assuming
that I(x, y, t) is a pixel of a 2D image frame:

I(x, y, t) = I(x+ dx, y + dy, t+ dt), (3.8)

where the dx, dy is the distance of a pixel’s movement during dt time. The following
equation can be created with Taylor series approximation, which is also called the Optical
Flow equation:

fxu+ fyv + ft = 0, (3.9)

where fx = ∂f
∂x

, fy = ∂f
∂y

, u = dx
dt

, v = dy
dt

and fx and fy are image gradients. The u
and v are the unknowns in this equation. Since this equation has two unknowns, it can
not be solved directly, it needs further assumptions. There are different methods for solv-
ing it, one of them is Lucas–Kanade method, and the other is Gunner Farneback’s algo-
rithm [135]. The main difference between them that Farneback’s algorithm (dense Optical
Flow) make a motion vector for every pixel, while Lucas–Kanade (sparse Optical Flow)
only calculates (3.8) for some pixels (with good features). Lucas–Kanade method takes
a 3 x 3 patch around the selected pixels, thus there are 9 equations with two unknowns,
which can be solved. With this algorithm, the selected pixels in consecutive frames can be
tracked.
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Fig. 3.10. Masked frames with the semi-automatic ground truth generation method on the JIGSAWS dataset
(example image frames for Knot-Tying, Needle-Passing, Suturing).

Using the Optical Flow algorithm [135], ground truth generation for semantic segmen-
tation can be done in a semi-automatic way. Based on the performance of the Optical Flow
tracking in several trials, it can be concluded empirically that the algorithm was able to
track the labelled pixels through 30 frames. Above 30 frames, the Optical Flow could not
track the selected pixels. Therefore, only every 30th frame needed to be segmented man-
ually, which is not as time-consuming as hand-labelling every frame. Then, the labelled
pixels were tracked with the Optical Flow algorithm. This method gave acceptable results,
because after every 30th frame there is again a hand-labelled frame, so if the algorithm
lost the pixels, then with the hand-labelled frame it was fixed. After that, some classical
post-processing steps were applied. Small objects which did not belong to the tools were
removed and also morphological closing was applied. Then the holes in the surgical tools
were filled (which were created by the tracking, since the Optical Flow tend to track only
the edges). At last, median blurring was applied on the frames to smooth the edges. The
masked frames can be found in Fig. 3.10.

With this method a ground truth dataset was created which contains semantic labelling
of 9 videos, 3-3 from each type of surgical tasks (Knot-Tying, Needle-Passing, Suturing).
These segmentations are not always perfect, the edges of the masks are sometimes not
accurate. But these masks are still good enough to consider that it is much faster than to
segment the tools manually.

3.3.2 Benchmark methods
Currently, in surgical tool segmentation, the best results are achieved with NN-based meth-
ods. As these problems are similar to semantic segmentation on the JIGSAWS dataset, the
most frequently used neural network architectures were examined in tool segmentation.
Data augmentation is a powerful technique in deep learning that leverages various trans-
formations leading to better model performance and generalization. In surgical tool seg-
mentation, a series of data augmentations commonly used in computer vision tasks were
defined to enhance the robustness and diversity of training data for deep learning models.
These augmentations include resizing and cropping, as well as horizontal and vertical flips.
First, it pads the input images to ensure they meet a minimum height and width require-
ment, followed by a random crop to the specified training crop size. Random cropping
helps introduce variability into the training data. Additionally, horizontal and vertical flips
with 50% probability are applied to simulate different viewing angles and orientations.
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These augmentations help the neural network learn to recognize objects in various posi-
tions, orientations, and scales. Finally, normalization is performed to standardize the pixel
values, aiding in the convergence and stability of the training process. These augmenta-
tions collectively contribute to improving the model’s ability to generalize and perform
well on a wide range of real-world images.

UNet

U-Net type architectures have a contracting path, which follows a typical convolutional
network architecture and an expansive path which uses upsamplings. In the contracting
path, there are 3 x 3 convolutions, which are followed by a rectified linear unit (ReLu) and
2 x 2 max pooling units for down-sampling. In the expansive path, the feature maps are
up-sampled by up-convolutions (2 x 2), and after that, there are always 3 x 3 convolutions,
which are followed by ReLU. There is a 1 x 1 convolution in the final layer to map the
feature vectors to the given number of classes. In this architecture, there are also skip-
connections between the contracting and expansive paths [136, 137].

LinkNet-34

LinkNet is also a part of the U-Net family, it has a similar architecture. The only differ-
ence is that it uses a ResNet-type architecture as an encoder. In LinkNet34, a pre-trained
ResNet34 is used. The contracting path starts with 7 x 7 convolution with stride 2, and
then a max-pooling layer. After that there are residual blocks, which contain two 3 x 3
convolutions, the first one with stride 2, the second one with stride 1. In the expansive
path, there are decoder blocks which are connected to the corresponding encoder blocks.
The decoder blocks consist of 1 x 1 convolution layer, followed by batch normalization
and transposed convolution. LinkNet has an advantages that it contains less parameters,
thus it is faster than other neural network architectures [138].

TernausNet-11

TernausNet is also a U-Net like architecture, which uses pre-trained VGG11 encoders.
VGG11 has seven convolutional layers which are followed by ReLu activation function
and five max-pooling layers, which reduce the feature maps by 2. All of the convolutions
are 3 x 3. This architecture also worked well on aerial images of urban settlements [139,
140].

TernausNet-16

The difference between UNet11 and UNet16 is that they use different pre-trained encoders
UNet16 uses VGG16 [141, 142].

3.3.3 Segmentation with Pre-Trained Networks
Pre-trained models on the JIGSAWS dataset were tested, which were trained on dataset
from the MICCAI 2017 Endoscopic Vision SubChallenge (Robotic Instrument Segmenta-
tion) [136, 143]. These pre-trained networks did not work acceptable on JIGSAWS dataset
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based on empirical preliminary studies, but with pre-processing steps, the segmentation
masks could be improved. The best pre-processing step was L*a*b colorspace conver-
sion, which could magnify the difference between the background and the surgical tools,
therefore the pre-trained networks could provide a better segmentation.

3.3.4 Training with the JIGSAWS dataset
With the ground truth of the JIGSAWS dataset, four different neural network architectures
were trained, namely UNet, TernausNet-11, TernausNet-16 and Linknet-34. The same
loss function for training was used as for the MICCAI dataset training [136]. This loss
function is a combination of the Jaccard index and binary cross entropy:

L = H − log(J), (3.10)

where H is the binary cross entropy and J is the Jaccard-index. The Jaccard-index also
known as Intersection over Union (IoU) is a similarity measure for sample sets (in this
case, two images). For discrete objects, it can be calculated in the following way:

J =
1

n

n∑
n=1

(
yiŷi

yi + ŷi − yiŷi
), (3.11)

where yi is a binary value (label) and ŷ is the predicted values for i pixel. The minimization
of this function means the maximization the intersection between the ground truth and the
predicted mask and maximize the probabilities of right predictions at the same time [136,
137].

The output of these architectures is a probability for each pixel, which indicates that
they belong to the surgical instruments or not. A 0.8 threshold was used, which means
that above this value, the pixels are considered as a part of the surgical tools. This thresh-
old value was chosen because it is quite high, so it means that these pixels have a high
probability that they belong to the surgical instrument according to the trained network.

3.3.5 Results
Results of the different methods on different surgical tasks can be seen in Figure 3.11. The
predicted masks were evaluated with the following metrics: Jaccard-index (or Intersection
over Union), Sørensen–Dice coefficient (DSC) and accuracy. Jaccard-index was also used
for the training as a part of the loss function, now the same metric is used for the evaluation
of the results.
Accuracy can be calculated:

ACC =
TP+TN

TP+TN+FP+FN
, (3.12)

where TP refers to true positives, TN is true negatives, FP is false positives and FN is
false negatives (in this case, TP is the number of pixels, which belong to surgical tools,
both in the ground truth and the segmented image, TN is the pixels which belong to the
background both ground truth the segmented image, FP which are segmented as tool but

56



Fig. 3.11. Visual examples of the outcomes: the derived masks of the same frame for surgical tool segmen-
tations (one example for each surgical tasks) by the examined methods.
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do not belong to it, and FN are pixels, which were segmented as background, but belong to
the objects). The Sørensen–Dice coefficient can be calculated with the following equation:

DSC =
2|X ∩ Y |
|X|+ |Y |

, (3.13)

where X is set of the ground truth mask’ pixels and Y is the set of segmented mask’s
pixels. So, in the numerator, the overlapping area is calculated and, in the denominator,
the number of the pixels in both images is calculated.

TABLE 3.5
RESULTS OF DIFFERENT METHODS (PRE-TRAINED UNET, PRE-TRAINED UNET11, PRE-TRAINED

UNET16, PRE-TRAINED LINKNET34, TRAINED UNET, TRAINED UNET11, TRAINED UNET16,
TRAINED LINKNET34). EVALUATION METRICS: JACCARD-INDEX (IOU), SØRENSEN–DICE

COEFFICIENT (DSC), ACCURACY IN PERCENTAGES.

Method Results
IoU Dice coeff. Acc.

Pre-trained UNet 13.02 23.13 29.39
Pre-trained TernausNet11 14.78 27.74 46.61
Pre-trained TernausNet16 16.69 28.23 49.35

Pre-trained LinkNet34 37.47 50.41 89.02
Trained UNet 69.63 79.16 96.18

Trained TernausNet11 70.96 79.91 97.38
Trained TernausNet16 59.53 66.64 95.44

Trained LinkNet34 70.73 79.14 96.21

The results of the image processing method were evaluated quantitatively, and the seg-
mentation with a pre-trained and trained models on nine videos, since the ground truth
annotations were done on nine videos on the JIGSAWS dataset. The trained neural net-
works with the JIGSAWS were evaluated with 3-fold-cross-validation since there were
three videos from each task [144]. The networks were trained with six videos and evalu-
ated on three videos.

It can be seen in Table 3.5 and in Figure 3.12 that the best results with trained UNet11
architecture were provided: IoU = 70.96 and Dice = 79.91. The results were slightly
worse when LinkNet34 architecture was used for training: IoU = 70.73 and Dice = 79.14.
Simple UNet architecture could generate quite good results as well with IoU = 69.63 and
Dice = 79.16. UNet16 architecture overall was not so good with IoU = 59.53 and Dice
= 66.64. With pre-trained networks smaller accuracies were obtained which is because
these networks were trained on the MICCAI dataset, which differs a lot from the JIG-
SAWS dataset. Still, with the pre-trained LinkNet34 IoU = 37.47 and Dice = 50.41 can
be obtained, which could be increased by some post-processing steps. The pre-trained
UNet, Unet11 and UNet16 performed worse.

If each surgical task is considered separately, on Knot-tying videos every method
worked better than on Suturing or Needle Passing videos (Table 3.6). It could be because
in the Knot-Tying videos the contrast between the background and foreground is higher.
On Needle-passing videos objects in the background is really similar to the surgical tools.
Trained LinkNet34 architecture could achieve high results on Knot-tying videos with IoU
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Fig. 3.12. Jaccard-index, Dice-Coefficient and Accuracy of different methods (Classical Image Processing,
Pre-trained Unet, Pre-trained UNet11, Pre-trained UNet16, Pre-trained LinkNet34, Trained UNet, Trained
UNet11, Trained UNet16, Trained LinkNet34). As the plots illustrate, the best results were achieved with
the trained architectures. From the pre-trained architectures, the LinkNet34 gave the best results, the others
did not work well on the JIGSAWS. Also, Classical Image Prcessing technique failed on the JIGSAWS
dataset.

= 80.01 and Dice = 88.41. While on Needle-Passing and Suturing videos, UNet performed
better. On Needle-Passing videos Unet achieved IoU = 66.10 and Dice = 75.09 and on
Suturing videos it performed with IoU = 69.48 and Dice = 78.61. Trained LinkNet34 pre-
formed slightly less on these videos in the case of Needle-Passing IoU = 62.88 and Dice =
70.94 and IoU = 69.31 Dice = 78.07 on Suturing. Also, Unet11 and UNet16 performed on
Knot-tying videos better than on Suturing and Needle-Passing videos. This tendency also
occured with pre-trained architectures, and pre-trained LinkNet34 gave the best results for
all of the tasks. In the case of classical image processing method, also the best results were
achieved on the Knot-tying videos. The resulted masks by different methods can be seen
in Figure 3.11.

TABLE 3.6
THE RESULTS BY DIFFERENT TRAINING TASKS (KNOT-TYING, NEEDLE-PASSING, SUTURING).

EVALUATION METRICS: JACCARD INDEX (IOU), DICE COEFFICIENT, ACCURACY IN PERCENTAGES.

Methods
Different tasks

Knot-Tying Needle-Passing Suturing
IoU Dice Acc. IoU Dice Acc. IoU Dice Acc.

Pre-trained UNet 11.91 22.46 15.80 11.39 19.87 18.85 15.76 27.08 53.52
Pre-trained TernausNet11 15.01 28.36 42.09 13.20 22.60 33.16 16.14 32.27 64.59
Pre-trained TernausNet16 19.06 32.07 51.65 13.36 22.87 34.12 17.65 29.77 62.28
Pre-trained LinkNet34 56.90 71.06 93.25 24.18 35.32 85.37 31.33 44.85 88.45
Trained UNet 73.32 83.89 96.01 66.10 75.09 96.48 69.48 78.61 96.05
Trained TernausNet11 77.58 87.74 96.77 65.91 73.68 96.35 69.39 78.31 96.04
Trained TernausNet16 76.97 88.33 97.01 47.33 52.33 94.13 54.31 59.26 95.19
Trained LinkNet34 80.01 88.41 97.24 62.88 70.94 95.45 69.31 78.07 95.94
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3.3.6 Conclusion of surgical tool segmentation on the JIGSAWS dataset
Surgical tool segmentation based on visual data can be an important step toward the au-
tomation of image-based skill assessment. However, the JIGSAWS dataset, which is a
widely used dataset for skill assessment, did not have a labelling for surgical tools. There-
fore, the creation of a method for surgical instrument segmentation on the JIGSAWS
dataset was a great challenge. This section analyzed different methods for surgical in-
strument segmentation on the JIGSAWS dataset. Furthermore, a semi-automatic method
for ground truth generation to JIGSAWS was introduced, which was not available before.
The examined NNs were the following: UNet, TernausNet-11, TernausNet-16, Linknet-
34. First, pre-trained type of these architectures were considered and then training on
the JIGSAWS dataset was done. The best overall result was achieved by TernausNet-11
(the one that was trained on the JIGSAWS). Moreover, LinkNet-34 and UNet architec-
tures performed well in some specific surgical tasks. The results suggest that this work
can be a good base for creating more efficient surgical tool segmentation methods on the
JIGSAWS dataset, which can help the automation of skill assessment by denying critical
control parameters in real time. With different NN architectures (e.g., with Recurrent Neu-
ral Networks) these results might be improved as well. The segmentation of the surgical
tools could be also a good first step for the segmentation of different parts of the surgical
instruments.

3.4 Summary of the Thesis group
Surgical technical skill assessment is crucial in MIS for safety and personalized training
reasons, yet, it is not part of the clinical routine. Endoscopic image-based skill assessment
can provide a solution for the problem, because in the case of MIS and training videos of
MIS and RAMIS, only this sensory data is available. Since image-based skill assessment
can not achieve the accuracy of kinematic-based solutions, my goal was to propose solu-
tions which can increase the accuracy of image-based surgical skill assessment in RAMIS.
In this thesis, a surgical tool pose estimation technique and semantic segmentation was
introduced for the da Vinci Surgical System’s articulated tools targeting autonomous tech-
nical skill assessment. My surgical tool pose estimation method – which was performed
on 2D endoscopic images, based on shape features and iterative Perspective n Point trans-
formation method – provides a general solution, since it does not require kinematic data
or complete model of the tool. The method’s accuracy was proven in surgical skill assess-
ment, where it outperformed the state of the art in knot-tying videos. Ground truth gener-
ation for semantic segmentation for the JIGSAWS dataset was also introduced, which was
not available before. Using deep learning technologies, I provided an accurate solution
for semantic segmentation of the surgical tools for the JIGSAWS dataset, which was also
not available while it is essential in image-based skill assessment validation. Based on
my results, image-based surgical technical skill assessment can be a good alternative to
kinematic data-based skill assessment in the case of RAMIS.
Related publications: [RNE1, RNE2, RNE3, RNE4, RNE5]
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Chapter 4

AUTOMATED NON-TECHNICAL
SKILL ASSESSMENT AND
WORKLOAD EVALUATION IN MIS

4.1 Methods for non-technical skill and mental workload
assessment in RAMIS

4.1.1 Non-technical skill an workload assessment – self-rating tech-
niques

Performing a surgical procedure can be very stressful to the whole crew of the OR. Fatigue
(mental and physical) can naturally influence the outcome of the surgery, furthermore, time
limits can take serious stress and cognitive load on the surgeon, and working in a team can
be disturbing in some cases. Workload is a term that represents the psychological cost to
perform a task; it is human-specific, however, there are typical situations which can put a
serious amount of mental workload on every operator. Workload can be defined with self-
rating techniques, where a subject fills a questionnaire about his/her personal experience
about the task is burden, yet it is biased and subjective [52]. Furthermore, there are works
in the literature which studied both subjective and objective non-technical skill assessment
metrics [45, 145], or objective physiological parameters [47, 146, 147, 148, 149, 150, 43,
151]. Workload measurements do not only help to assess the personal workload index, but
also to define the main stressors and disturbing factors in surgery in general. Furthermore,
it provides personal training assistance for novices [52].

The widely employed NASA Task Load Index (NASA-TLX, created by NASA’s Ames
Research Center in 1988) is a workload self-rate metric, originally created for assessing
pilots’ workload in aviation [152, 14]. NASA-TLX measures the workload on a sub-
ject with questions related to mental, physical and temporal demand, effort, performance
and frustration level. The subject (which can be one person or all team members) has
to answer the questions on a 100-point-scale with 5-point steps (Table 4.1). NASA-
TLX is a generally used technique for workload measurement in aviation, military and
healthcare. NASA-TLX can also be found in traditional MIS mental workload estima-
tion [153, 154, 155, 156, 157], and employed in the case of surgical robotics workload
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TABLE 4.1
NASA-TLX MENTAL WORKLOAD SELF-RATING QUESTIONNAIRE [14].

Title Endpoint Description

Mental demands low/high How much mental activity was required?

Physical demands low/high How much physical activity was required?

Temporal demands low/high How much time pressure did you feel?

Effort low/high How hard did you have to work?

Performance good/poor How stressful do you think you were?

Frustration level low/high How frustrated did you feel?

assessment as well [28, 45, 47, 145, 146, 148, 150, 158, 159, 160, 161, 162, 163, 164, 165,
166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181]. There
are additional mental workload assessment techniques that were not created originally for
surgery, and used in workload assessment for RAMIS. Such examples are:

• Multiple Resources Questionnaire (MRQ) [182, 44, 165, 183, 167];

• Dundee Stress State Questionnaire (DSSQ) [184, 183, 44];

• Rating Scale for Mental Effort (RSME) [185, 147];

• Psychometric Testing of Interpersonal Communication Skills Questionnaire
(PTICSQ) [186];

• Safety Attitudes Questionnaire (SAQ) [187, 186];

• Wisconsin Card Sorting Test (WCST) [188, 162];

• Coping Inventory of Task Stress (CITS) [189, 44];

• Subjective Mental Effort Questionnaire (SMEQ) [190];

• Local Experienced Discomfort (LED) [190];

• Short Stress State Questionnaire (SSSQ) [191, 167].

MRQ estimates workload by 17 items, and it is specifically useful for multitasking
workload measurements [182]. SSSQ is based on DSSQ, and both target stress measure-
ment [191], such as CITS [189]. RSME and SMEQ estimate mental effort on a 9-point
scale from extreme effort to absolutely no effort. RSME is validated in healthcare as
well [185]. LED examines physical discomfort during a task [190]. For team communica-
tion quality estimation PTICSQ was created [186]. SAQ developed for healthcare, which
examines employees’ satisfaction with the job, teamwork, management, safety, stress and
working conditions [187]. WCST is a neuropsychological tool, which was originally cre-
ated for cognitive strategy adaptation measurements [188].

Surgery Task Load Index (SURG-TLX) (created by the cooperation of the University
of Hong Kong, University of Exeter and the Department of Urology, Royal Devon and
Exeter Hospital in 2011) is a modified NASA-TLX metric for surgical workload measure-
ments [15]. SURG-TLX estimates the workload based on mental demands, physical de-
mands, temporal demands, task complexity, situational stress and distractions (Table 4.2,
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TABLE 4.2
THE COMPOSITION OF THE SURG-TLX MENTAL WORKLOAD SELF-RATING QUESTIONNAIRE [15].

Title Endpoint Description

Mental demands low/high How mentally fatiguing was the procedure?

Physical demands low/high How physically fatiguing was the procedure?

Temporal demands low/high How hurried or rushed was the pace of the procedure?

Task complexity low/high How complex was the procedure?

Situational stress low/high How anxious did you feel while performing the proce-
dure?

Distractions low/high How distracting was the operating environment?

Fig. 1.6). SURG-TLX was tested on the Fundamentals of Laparoscopic Surgery (FLS)
peg transfer task under stress, such as fatigue, multitasking, distraction and task nov-
elty. While this metric was validated for surgery, only a few RAMIS publications were
found on this topic [159, 147, 149]. Nevertheless, this topic is well-studied in traditional
MIS [192, 193, 194, 195, 196], to the best of the authors’ knowledge there is no workload
self-rating measurement metric specifically created for RAMIS.

Self-rating techniques are easy to implement, and they do not require external human
resources, however, they can definitely be biased. It is necessary to consider the usage
of self-rating techniques in automated or expert-rating focused NTS and workload assess-
ment studies, because these questionnaires can provide an easy validation tool for correla-
tion examinations. With self-rating tools, the real stressors of the surgery can be observed,
and other approaches have to fit to the clinical relevance. Self-rating studies can be found
in Table 4.5 with the following references: [43, 44, 45, 47, 145, 146, 147, 148, 149, 155,
161, 162, 164, 165, 166, 167, 168, 169, 171, 173, 174, 175, 176, 177, 180, 181, 186, 190,
197, 198, 199].

4.1.2 Non-technical skill assessment – expert rating
In surgical skill assessment, expert rating techniques are widely used, not just in the case
of technical skill assessment, but for non-technical skill assessment as well. Therein, an
expert panel (usually 8–10 expert surgeons) assesses the skills of the practicing surgeon,
based on a video recording of the procedure/training session, based on a validated set
of requirements. Expert rating assessment is relatively easy to complete (compared to
automated techniques), more objective than self-assessment, but it definitely requires sig-
nificant effort and human resources, and it can still be biased for personal reasons. At the
moment, expert rating technique is the gold standard for automated skill assessment.

In the case of non-technical skill assessment, there are several different expert-rating
metrics for traditional MIS, such as NOTECHS, OTAS and NOTSS (Table 4.3). A few
publications were identified which studied NOTSS in the case of RAMIS [45, 46, 200].
For surgical robotics, there is one metric which specifically measures the NTS of robotic
surgeons [17]; the Interpersonal and Cognitive Assessment for Robotic Surgery (ICARS),
developed by Raison et al. in 2017. It was created by 16 expert surgeons with the Delphi
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TABLE 4.3
BEHAVIORAL RATING SYSTEMS IN TRADITIONAL SURGERY COMPARED TO ICARS, THE ONLY

EXISTING NON-TECHNICAL SKILL ASSESSMENT METRIC FOR RAMIS [16, 17]. N/A: NOT

APPLICABLE

revised NOTECHS NOTSS OTAS ICARS

Date 2008 2006 2006 2017

Reference [204] [205] [206] [17]

Non-
technical
skills

• Communication
& interaction

• Situational
awareness

• Team skills

• Leadership &
management

• Decision mak-
ing

• Situational
awareness

• Decision mak-
ing

• Task manage-
ment

• Leadership

• Communication

• Teamwork

• Task checklist

• Shared monitor-
ing

• Communication

• Cooperation

• Coordination

• Shared leader-
ship

• Communication
& teamwork

• Leadership

• Decision making

• Situational
awareness

• Cope with stress
and distractors

Content
validity ✓ ✓ ✓

Construct
validity ✓

Inter-
rater
reliability

✓ ✓ ✓ ✓

Sensitivity n/a
not acceptable

in some
categories

n/a n/a

Feasibility ✓(especially for
self-assessment) ✓

limited to
certain

procedures
✓

method [201]. In ICARS, there were 28 NTS identified (Fig. 1.6), in 3 main non-technical
skill categoriesTable 4.4, namely:

• Interpersonal skills (communication/teamwork and leadership);

• Cognitive skills (decision making and situational awareness);

• Personal resource skills (cope with stress and distractions.

However, only one clinical study was found which used ICARS for non-technical surgical
skill assessment [200]. Despite the disadvantages of expert-rating techniques (need for
expert surgeon resources, time, bias), they can be an objective tool for automated technique
validation, furthermore, they can provide a model for NTS assessment through the critical
NTS categories and the given points. Expert-rating studies can be found in Table 4.5 with
the following references: [17, 28, 45, 145, 147, 150, 158, 159, 160, 162, 163, 169, 170,
172, 178, 179, 200, 202, 203].
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TABLE 4.4
INTERPERSONAL AND COGNITIVE ASSESSMENT FOR ROBOTIC SURGERY (ICARS) EXPERT RATING

METRICS [17]
NTS category NTS group NTS

Interpersonal
skills

Communication and teamwork
Effective verbal communication

Appropriate interaction with bedside surgeon

Appropriate interaction with operating room staff

Engages/initiates in confirmatory feedback with OR staff

Leadership

Appropriate and polite instructions

Effective workload management

Coordination of the team from the console

Coordination of the team at the bedside

Delegating tasks to team members

Maintenance of professional standards

Cognitive skills

Decision making

Appropriate decision making in case of equipment failure

Appropriate decision making at the bedside

Quick diagnosis of unexpected patient events

Quick decision making in case of emergency

Generation, selection and implementation of solutions

Outcome review of decision

Situation awareness

Awareness of patient status

Ability to deal with patient at the bedside

Ability of quick adaptation to problems

Anticipation of potential problems

Role awareness of surrounding team members at the console

Personal resource
skills

Cope with stress and distractors

Understands personal limitations and asks for help

(if necessary)

Identification of stressor

Maintenance of cognitive skills

Maintenance of technical skills

Professional and appropriate choice of resolution
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4.1.3 Automated non-technical skill and mental workload assessment
in RAMIS

Establishing the correlation between physiological signals, kinematic data or other ob-
jectively measurable features and NTS or mental workload can lead to autonomous non-
technical skill assessment in RAMIS.

A common approach is to assess the NTS of the surgeon is through the measurement
of physiological signals. However, this has limitations: the physiological signals are often
linked to a particular non-technical skill, such as stress level, but they do not show other
important factors (situational awareness, teamwork, etc.). In the literature, physiological
measurements related to the stress level can be found, such as:

• brain activity [207];

• skin temperature [208, 209];

• nose temperature [210];

• heart rate (HR) [211];

• skin conductance [211];

• blood pressure [211];

• respiratory period [211];

• tremor [212];

• eye movement [213].

While these physiological signals are proven to be related to stress, they naturally have
limitations in the usage of NTS and cognitive load assessment. Such example is skin
conductance, which can be a useful technique to estimate workload [43], but it can be
influenced by other physiological factors. Brain activity, HR, and eye movement are the
most studied signals in RAMIS, which can refer to more complex underlying behavior,
such as technical skills [214], but the correlation between these signals and NTS is harder
to be established.

In the literature, there are examples of the usage of an electroencephalogram (EEG) [47,
174, 199, 148, 150, 215, 175, 177], given the fact that EEG measures the electrical activ-
ity of the brain [216]. While EEG is the most trivial physiological signal measurement
technique for non-technical surgical skill assessment, the proven correlation between the
measurable brain activity and NTS is limited. Another approach for physiological signal-
based mental workload assessment is the measurement of the HR [27, 147, 149, 190, 177].
However, the accuracy of HR measurements for cognitive load assessment was not enough
in some cases, because there is no scale for maximum tolerated workload levels, and their
related effects on the surgeon’s health [27]. The following forms of HR can be found
in the non-technical skill assessment literature, however, the usage of them can also be
cumbersome [216, 217]:

• simple HR;

• Heart Rate Variability (HRV);
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• mean square of successive differences between consecutive heartbeats (MSSD);

• average heart rate (HRA).

Another objective method for non-technical skill or mental workload assessment is
Functional Near-Infrared Spectroscopy (fNIRS) [149, 218, 219]. FNIRS is a functional
neuroimaging technique to track the brain activity by monitoring the blood flow in the
prefrontal lobe [220]. FNIRS shows a strong correlation with PET and fMRI data, yet it
has better temporal resolution than fMRI, but limited compared to EEG; spatial resolution
is more limited compared to fMRI, but better compared to EEG [221, 222]. Furthermore,
time of isovolumetric contraction (PEP) [223], electromyography and electrodermal [177]
can also be used in mental workload assessment [190], however, these signals can be
influenced by the surgeon’s general health. Pupillary response is also studied in relation to
workload [151].

To summarize, the following sensors/imaging techniques were studied in NTS and
workload assessment in RAMIS (detailed in Table 4.5):

• magnetic pose trackers;

• EEG;

• ECG;

• fNIRS;

• skin conductance sensor;

• electromyograph;

• eye-gaze tracker;

• heart rate monitor.

Sensors in RAMIS on the technical side are not external only, but there are built-in robot
sensors, which can help NTS skill assessment and proven tools for technical skill assess-
ment in RAMIS:

• position sensors (encoder);

• 3D endoscopic camera.

In RAMIS research, there are developed/used sensors which are not strongly related to
NTS and workload assessment, but in most of the cases these modalities showed correla-
tions with technical skills [224]. These sensors including but not limited to the following
devices [225, 226, 227, 228]:

• force sensors (strain gauges, capacitive sensors, piezoelectric sensors, optical sen-
sors);

• tool position sensing (optical, electromagnetic);

• master/surgeon arm position sensing (external);

• wearable eyeglasses (Oculus Rift, Google Glass);

67



• tool thermal sensor;

• pressure sensors;

• camera (RGB-D, external);

• communication (RF sensors);

• speech (microspeaker);

• sound (microphones).

Automated NTS and workload assessment can be a key to an objective, reproducible
measure regarding the surgeon’s skills without bias and the procedure’s need of human
resources. However, these techniques are hard to implement, and the usage of additional
sensors can be a problem in a clinical environment. Nevertheless, NTS and workload
might be demonstrable in objective, technical skills, as suggested in [199], which means
these sensors can provide an option for NTS assessment as well, however, this research
field is not studied widely yet. Automated studies can be found in Table 4.5 based on the
following references: [27, 43, 47, 146, 147, 148, 149, 150, 151, 174, 175, 177, 190, 199,
215, 218, 219].
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TABLE 4.5: Non-technical skill and mental workload assessment in surgical robotics.
Used abbreviations: S. – number of subjects, RAMIS – Robot-Assisted Minimally In-
vasive Surgery, OR – Operating Room, VR – Virtual Reality, EEG – electroencephalo-
gram, NASA-TLX – NASA Task Load Index, SURG-TLX – Surgery Task Load Index,
NOTSS – Non-Technical Skills for Surgeons, MRQ – Multiple Resources Questionnaire,
DSSQ – Dundee Stress State Questionnaire, ECG – electrocardiogram, HR – heart rate,
HRV – heart rate variability, RSME – Rating Scale for Mental Effort, PTICSQ – Psycho-
metric Testing of Interpersonal Communication Skills Questionnaire, SAQ – Safety Atti-
tudes Questionnaire, fNIRS – Functional Near-Infrared Spectroscopy, PVT – Psychomotor
Vigilance Test, WCST – Wisconsin Card Sorting Test, CITS – Coping Inventory of Task
Stress, MSSD – mean square of successive differences between consecutive heartbeats,
PEP – time of isovolumetric contraction, HRA – average heart rate, SMEQ – Subjective
Mental Effort Questionnaire, LED – Local Experienced Discomfort, SSSQ – Short Stress
State Questionnaire, p. – procedures (where no subject data was available), QoE – Quality
of Evidence, mod.: moderate.

Ref. S. Environment Input Feature/
NTS

Conclusion QoE

[43] 10 Dry lab Skin conductance
Self-rating
(custom)

Workload
Stress

Stress is less in the case of RAMIS compared
to traditional MIS. mod.

[163] 5 VR simula-
tor NASA-TLX Workload Workload can be increased in proportion to de-

lay time with the proposed simulators. low

[44] 15 Dry lab DSSQ
MRQ
CITS

Workload
Stress

Stress is less, workload and stress coping strate-
gies are the same in the case of RAMIS com-
pared to traditional MIS.

low

[170] 20 VR simula-
tor NASA-TLX Workload Mimic dV-Trainer shows reasonable workload

results. low

[165] 15 Dry lab NASA-TLX
MRQ

Workload
The usage of the da Vinci 3D view causes less
workload compared to the 2D view in some
cases.

low

[172] 6 VR simula-
tor NASA-TLX Workload Time delay in teleoperation can significantly in-

crease the workload. low

[190] 16 Dry lab
MSSD
PEP
HRA
SMEQ
LED

Workload
Stress

RAMIS causes less cognitive workload com-
pared to traditional MIS. low

[28] 34 Live porcine NASA-TLX Workload RAMIS poses less mental workload compared
to traditional MIS. mod.

[178] 3 VR simula-
tor NASA-TLX Workload Workload is not improved under delays of 300

ms and 400 ms in the simulated environment. low

[219] 21 VR simula-
tor fNIRS Workload FNIRS can show the cognitive burden during

training. high

[183] 15 Dry lab MRQ
DSSQ

Workload
Stress

Novices have less stress when working with the
da Vinci compared to traditional MIS. low

[179] 12 Dry lab NASA-TLX Workload After the proposed training, mental workload is
similar between novices and experts. low

[218] 21 VR simula-
tor fNIRS Cortical activity

There is a significant difference between expert
and non-expert subjects with Gaze-Contingent
Motor Channeling.

mod.

[27] 2 OR HR
HRV

Stress
RAMIS poses less mental workload compared
to traditional MIS. Workload measurement
with HRV is cumbersome.

mod.

[160] 28 Dry lab NASA-TLX Workload RAMIS poses significantly better workload
perception compared to traditional MIS. low

[158] 52 VR simula-
tor NASA-TLX Workload

Urethrovesical anastomosis VR training im-
proves technical skill acquisition with cognitive
demand.

mod.
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Ref. S. Environment Input Feature/
NTS

Conclusion QoE

[168] 28 VR simula-
tor NASA-TLX Workload Xperience Team Trainer emphasizes the impor-

tance of teamwork. mod.

[199] 10 Dry lab EEG
Cognitive
engagement
Mental workload
Mental state

Cognitive assessment can define the expertise
levels. high

[147] 32 Dry lab
SURG-TLX
RSME
Heart rate
monitor

Workload
HRV

RAMIS poses less mental workload compared
to traditional MIS. mod.

[203] 6 Simulated
OR

Expert rating
(custom)

Communication
Leadership

Repeated simulations and increased leadership
mean faster and less flawed conversions in the
OR.

mod.

[169] 24 Image dis-
play NASA-TLX Workload Increasing the level of cognitive load is signifi-

cantly increasing the inattention blindness. mod.

[150] 1 OR EEG
NASA-TLX

Workload
Distractions
Mental state

Expert surgeons use different mental resources
based on their needs. mod.

[202] 89 OR Expert rating
(custom)

Communication
Decision making

RAMIS increases communication requirements
for the team of the OR. mod.

[186] 32 OR PTICSQ
SAQ

Communication There is a significant correlation between team
communication and surgical outcome. mod.

[148] 1 OR EEG
NASA-TLX

Workload A surgical expert during mentoring concerned
while he was observed the surgery. low

[145] 89 OR
Expert rating
(custom)

NASA-TLX

Communication
Workload

The proposed method is capable of capturing
team activities during RAMIS. mod.

[161] 21 Live porcine
VR simulator

NASA-TLX Workload Live animal and VR simulator training provide
a comparable workload. low

[175] 8 VR simula-
tor

EEG
NASA-TLX

Procedural
memory
Attention level
Workload

EEG can show the learning progress in the case
of RAMIS. high

[164] 55 OR NASA-TLX Workload The study proposes a workload variety analysis
with different members of the OR. mod.

[197] 25
p. OR NASA-TLX Workload

NASA-TLX is a useful tool for determining the
appropriate staff member mix for RAMIS pro-
cedures.

mod.

[198] 10 OR SURG-TLX Workload Mental demands are higher for surgeons at the
console than are assisting. mod.

[171] 24 Live porcine NASA-TLX Workload Single-site access surgery can significantly re-
duce the workload. mod.

[47] 27 VR simula-
tor

EEG
NASA-TLX

Cognitive features
Mental workload
Engagement
Asymmetry index
Brain functional
features
Communication
Integration
Recruitment
Workload

EEG features can be used for objective non-
technical skill assessment. high

[166] 27 OR OR efficiency
(custom)
NASA-TLX

Communication
Workload

Anticipation causes shorter operating time.
Team familiarity causes less inconveniences.
Less anticipation causes less cognitive load.

mod.

[167] 32 VR simula-
tor

NASA-TLX
SSSQ
MRQ

Workload
Stress

Training with a VR simulator can decrease the
workload and stress. mod.

[146] 8 VR simula-
tor

NASA-TLX
Eye movements

Workload Eye movements correlate with the workload. high

[180] 5 OR NASA-TLX Workload
Workload is less in the case of robot-assisted
submucosal dissection compared to the tradi-
tional case.

low
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Ref. S. Environment Input Feature/
NTS

Conclusion QoE

[45] 20 OR NOTSS
NASA-TLX

Situational
awareness
Decision making
Leadership
Communication
Teamwork
Workload

Non-technical skills are associated with team
efficiency, surgical flow disruptions and self-
perceived performance.

high

[151] 26 Dry lab
Task-evoked
pupillary
response

Workload
Under high cognitive workload, there can be
a divergence in robotic movement profiles be-
tween expertise levels.

high

[46] 62 Dry lab
Simulated OR

NOTSS
Situational
awareness
Decision making
Leadership
Communication
Teamwork

Motor imaginary training technique is not ef-
fective in non-technical skill training. mod.

[181] 7 OR NASA-TLX Workload
RAMIS requires less mental demand and ef-
fort compared to open access surgery and tra-
ditional MIS.

mod.

[174] 4 OR EEG
NASA-TLX

Cognitive features
Functional features
Mental workload
Mental load
Engagement
Situation
awareness
Blink rate
Asymmetry index
Completion time
Communication

During a simple surgical task, functional brain
features are sufficient to classify mentor-trainee
trust.

high

[149] 8 Dry lab fNIRS
SURG-TLX
HRV

Prefrontal
activation
Workload
Stress response

RAMIS improves performance during high
workload conditions. high

[215] 32 VR simula-
tor EEG

Electrocortical
activity in tem-
poroparietal and
left frontal regions

There are significant differences in electrocor-
tical activity between novices and experts. high

[177] 12 VR simula-
tor

HRV
NASA-TLX
Wrist motion
Electromyo-
graphy
Electrodermal
EEG

Workload
Expertise

The proposed skill and workload evaluation
framework is accurate. high

[173] 31 VR simula-
tor NASA-TLX Workload

Specific self-directed robotic simulation cur-
riculum was introduced, which can signifi-
cantly decrease the workload.

mod.

[176] 264
p. OR NASA-TLX Workload

Mental workload is similar in the case of
RAMIS, traditional MIS, hand-assisted MIS
and open surgery.

mod.

[162] 30 Wet lab NASA-TLX
PVT
WCST

Workload
Concentration
Cognitive function

Robotic assistance does not provide less mental
workload with novices. Robotic assistance may
be mentally taxing for robotic novices.

mod.

[200] n/a OR
OTAS
NOTSS
ICARS
NOTECHS II

Situation
awareness
Decision making
Communication
Teamwork
Leadership
Stress

The study proposed a structured approach to the
analysis of non-technical skill using extracor-
poreal videos of both open radical cystectomy
and RAMIS radical cystectomy

mod.

[159] 13 Dry lab NASA-TLX Workload
Physiological and cognitive ergonomics with
robotic surgery are significantly less challeng-
ing compared to traditional MIS.

low
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4.2 Autonomous non-technical surgical skill assessment
and workload analysis in laparoscopic cholecystectomy
training

RAMIS skill assessment is a relatively young research field, and the strong need for NTS
and workload assessment has not found solid bases in the literature yet. A few publica-
tions suggested objective, sensor-based non-technical skill and mental load evaluation in
RAMIS, while this approach can provide bias-free, reproducible solution in the clinical
environment. Furthermore, during surgical education, personalized skill training would
provide a more effective learning procedure, which can be achieved more easily with ob-
jective metrics. Nevertheless, objective metrics are hard to implement, additional sensor
usage can be problematic in a clinical environment, and at the moment, there are not any
validated objective and automated metrics in NTS assessment. On the other hand, there
are close relations in manual MIS and RAMIS, and in manual MIS, it is already suggested
to approach NTS assessment with technical skill assessment metrics [51, 229], which is a
much more studied area in RAMIS. It suggests that technical and NTS are not different in
RAMIS, thus the connections of these two seemingly diverse research approach should be
studied more thoroughly . With validated manual techniques, it can be done by relatively
simple statistical analysis, but in the case of automated techniques, appropriate test en-
vironment, amount of data, sensor usage, feature extraction and classification techniques
should be examined carefully. For technical skill assessment, there are accurate results
with kinematic [11] and video data [230] as well. However, these studies only focus on
the surgeon and not the whole crew of the operating room, with external sensors (such
as cameras) workflow and NTS (such as communication and teamwork) the correlation
can be studied. However, the first step of these studies is to examine the different sensor
outputs, which can correlate with technical and non-technical metrics. RAMIS built-in
sensors (3D endoscopic camera and kinematic sensors) can significantly ease NTS skill
assessment and workload examination, and with them correlations with other sensor out-
puts and/or self/expert-rating results can be studied.

In this thesis group, an automated, image and force sensor-based non-technical surgical
skill classification solution is presented, aiming to understand the correlations behind tool
motions, used forces and situation awareness, dealing with stress and distractions. To
achieve this, a MIS setup was used because, at that time, there were no experienced console
surgeons in Hungary. For this, a laparoscopic training platform was created, simulating
certain parts of laparoscopic cholecystectomy: clipping the cystic artery and the dissection
of the parietal peritoneal layer. The training task requires situation awareness, dealing with
stress and distractions, and decision making. The analysis of the workload was done with
a self-rating questionnaire (Surgery Task Load Index, SURG-TLX) [15]. Tool motion was
processed with an object tracking computer vision algorithm (CSRT [231]). The time
series data (force and image) were classified with a Fully Convolutional Neural Network-
based classifier [13].
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Fig. 4.1. Laparoscopic cholecystectomy surgical scene and anatomy. A) Laparoscopic cholecystectomy
(LC) surgical scene, after exposing the Calot’s triangle; b) Anatomy of the cyst and its environment; c)
Surgical phantom created for LC with the peritoneum, cyst and the cystic artery.

4.2.1 Medical background—Laparoscopic Cholecystectomy
Cholecystectomy is one of the most common MIS interventions in the 21st century of
medicine, which requires advanced non-technical skills from the surgeon. Main indica-
tions of the operation are gallstones (cholelithiasis), inflammation of gallbladder (chole-
cystitis), or less frequently, polyp or neoplasm of the cyst itself. Stones could lead to acute
inflammation, decades of chronic ulceration of the cyst wall and tissue inflammation could
lead to metaplasia, dysplasia and malignancy. According to Kenneth et al., approximately
300,000 cholecystectomies are performed in the US annually [232]. The gold standard
approach of the procedure is MIS laparoscopic way, especially in elective cases. While
it is a really frequent type of procedure, performing it requires a well-trained and skilled
surgeon in the domain of hepato-biliary tract, to maintain patient safety, as any accidental
damage could lead to serious complications. Manipulation with laparoscopic tools has a
slow learning curve, but has enormous benefit to the patient, including less post-operative
pain, faster recovery and less hospital stay, effect on overall health economy is unques-
tionable. The procedure itself starting with CO2 inflation of the generally anesthetized
patient’s abdominal cavity with secure Veress-needle to gather room to manoeuvre the la-
paroscopic tools. Safety trocars are inserted through the abdominal wall, and the working
instruments are applied in them. Clear vision of the operating area and tools are required
for step-by-step appropriate decision making. Exploration of Calot’s Triangle’s structures
at the porta hepatis is the main aspect of the whole surgery (Fig. 4.1), including the follow-
ing steps done on the cystic artery and cystic bile duct (maintaining attention on avoidance
of choledochal duct and duodenum itself):

• Localization;

• Dissection;

• Clipping;

• Transecting.

Failure in any of these steps can occur in severe intra-operative or post-operative bleed-
ing, injury or damage of nearby organs or bile leakage with necessity of re-operation and
High Dependency Intensive Care, caused by general inflammation of peritoneum and sys-
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Fig. 4.2. Experiment’s workflow. A) Grasping the outer layer (peritoneum) with a dissector; b) Cutting the
outer layer with a pair of scissors; c) Blunt dissection; d) Cutting; e) Removing the covering layer; f) Abrupt
bleeding; g) Localize the bleeding source, change the tools to a clipper; h) Clipping the blood vessel.

tematic septic condition. The finishing steps of LC involve the dissection and cauterisa-
tion of the parietal peritoneal layer to remove the cyst from its “nest”. After removal of
the gallbladder through the epigastric port, revision of the operating site is required for
re-assuring the deficit of any complication, in certain cases drain/s is/are applied, finishing
with desufflation of abdominal cavity and skin closure.

4.2.2 Surgical phantom, experimental environment and workflow
Surgical anatomical phantoms and training platforms are created to simulate real surgical
environments and situations, and to train the proper surgemes to surgeons. The usage of
phantoms and validated training tasks are extremely important for training in MIS, since
the motions can be difficult to perform precisely with laparoscopic tools. In this part of
my thesis work, a simple phantom for laparoscopic cholecystectomy was created based on
a cyst dissection phantom (Laparoscopyboxx, Nijmegen, NL) [233]. In this phantom, a
balloon was placed inside another balloon, which was then blown. It resulted that the outer
balloon could be dissected without causing damage to the inner balloon, which represented
the dissection of the peritoneum to remove the cyst (Fig. 4.1). In this work, a damaged
tube was added to the model, which simulated the cystic artery clipping failure aiming to
create a stressful situation which required quick problem solving. For the experiments,
a laparoscopic dissector and a pair of scissors were used, and for handling the bleeding,
10 mm single-use clipper was utilized.

The workflow of the experiment started with a general introduction of the task to per-
form (with a video illustration), and for the novices, the proper usage of the laparoscopic
tools was shown. The experiments were done in a laparoscopic trainer box, which repre-
sented the MIS environment (the tools were inserted to small incisions). For the experi-
ments, only two ports were used for the two tasks: dissecting the outer balloon with the
dissector and the scissors and for clipping the blood vessel. The operating area was visu-
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TABLE 4.6
SURGICAL PHANTOM AND TRAINING ENVIRONMENT VALIDATION QUESTIONNAIRE.

Title Endpoint Description

Experiment’s
applicability not appropriate/excellent (0–5) How appropriate was the experiment to teach la-

paroscopy during the modeled surgery?

Movement
similarity not similar/same (0–5) How similar are the movements to those required

during surgery?

Anatomical
similarity not similar/same (0–5) How realistic is the anatomical phantom designed to

model the surgical area?

Simulation of
stress not appropriate/excellent (0–5) How suitable is the anatomical phantom to simulate

stressful surgical situations?

alized by an Intel RealSense D435i depth camera. On a screen, the two-dimensional RGB
images were shown to the operator. The screen was placed beside the subjects, where
they could only see the camera image in an uncomfortable posture, simulating the limited
ergonomy in the OR. The technique of the dissection was not pre-defined. The operators
could perform blunt dissection, cutting and grasping with the tools during the dissection
task (Fig. 4.2). The first task ended with the proper dissection of the outer balloon (without
damaging the inner balloon) or with a damaged inner balloon (which determines if the pro-
cedure was successful or not). After that, the second task was to localize the bleeding, and
to use a clipper to handle it. For this, the subject had to remove at least one laparoscopic
tool, and change to the clipper. The experiment ended with clipping the blood vessel. The
subjects had to perform these tasks three times, and following each task he/she had to fill
a questionnaire about the workload. For medical professionals, after the tests a question-
naire about the phantom, it had to be filled out. Surgical and simulator/video game usage
was also surveyed.

4.2.3 Questionnaires
After every experiment, the subjects had to fill a questionnaire about the experienced work-
load. SURG-TLX is a modified NASA-TLX metric for surgical workload assessment [15].
SURG-TLX estimates the workload based on mental demands, physical demands, tempo-
ral demands, task complexity, situational stress and distractions (Table 4.2). SURG-TLX
was tested on the FLS peg transfer task under stress, such as fatigue, multitasking, dis-
traction and task novelty. It is necessary to consider the usage of self-rating techniques in
automated or expert-rating focused NTS and workload assessment studies, because these
questionnaires can provide an easy validation tool for correlation examinations. With self-
rating tools, the real stressors of the surgery can be observed based on the subjects’ opin-
ion, and other approaches have to fit to the clinical relevance.

After the three trials, medical professionals had to fill a questionnaire about the surgical
phantom and the experiment (Table 4.6). This included a question about the experiment’s
applicability for MIS training, the surgical tool movements similarity to real surgery, the
anatomical similarity, and the experiment’s capability to simulate stressful surgical simu-
lations.
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Fig. 4.3. Experimental environment. A) Surgical trainer box with the components of the experiment
(phantom and sensors); b) Camera image streamed for the operators during the training and recorded for
data processing.

Fig. 4.4. Autonomous non-technical surgical skill assessment method workflow based on sensory data with
FCN multivariate time series classification. FCN architecture for non-technical surgical skill classification
originally proposed by Wang et al. [13]. The network is built of a convolutional layer followed by a batch
normalization layer and a ReLU activation layer. The features are fed into a global average pooling layer,
and the final label is produced by a softmax layer.
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4.2.4 Statistical analysis
Statistical differences were tested between the medical professionals (MP) and the control
group (CG) with Mann–Whitney U-tests. The Mann-Whitney U-test, also known as the
Wilcoxon rank-sum test, is a non-parametric statistical test used to compare the distribu-
tions of two independent groups to determine if they come from populations with different
medians. It assesses whether one group’s values tend to be consistently higher or lower
than those of the other group. It is suitable for comparing groups when the assumptions
of parametric tests (such as the t-test) are not met or when dealing with ordinal or non-
normally distributed data. Learning curve was tested along SURG-TLX criteria as well
based on Wilcoxon signed-rank tests. The Wilcoxon signed-rank test is a non-parametric
statistical test used to compare the medians of paired or matched data sets. It assesses
whether there is a significant difference between two related groups when the data does
not meet the assumptions for a parametric test like the paired t-test. The test evaluates
whether the ranks of the differences between paired observations are significantly differ-
ent from zero, indicating a shift in the medians of the two groups. It is often used when
dealing with ordinal or non-normally distributed data or when the paired nature of the data
is important [234].

4.2.5 Hardware and software environment
An Intel Realsense D435i camera’s RGB data was streamed and saved at 30 FPS with
640x480 pixels resolution (Fig. 4.3). The used forces were measured with a force-gauging
system, that measured the resultant external forces acting on the surgical phantom along
three perpendicular axes, which connected to and Arduino Nano (Arduino Srl) microcon-
troller for low-level signal processing. The microcontroller and the camera were connected
to a PC, where the data were saved. The main program (which handled the proper stream-
ing of RGB images, synchronized the force data, calculated the two-dimensional position
of the surgical tools, saved the data into a DNN-readable format and performed the classi-
fication) was written in Python 3 programming language, extended with OpenCV 4, Keras
and TensorFlow 2 libraries.

4.2.6 Surgical tool tracking
The surgical tools (scissors, dissector and clipper) were manually selected on the first
frame of the RGB stream with bounding boxes. For tracking the instruments, Channel
and Spatial Reliability Tracker (CSRT) was used proposed by Lukezic et al. [231]. In
the case of CSRT, an automatically estimated spatial reliability map restricts the discrim-
inative correlation filter to the parts of an object suitable for tracking with improving the
search range and performance for irregularly shaped objects. Channel reliability weights
calculated in the constrained optimization step of the correlation filter learning reduce the
noise of the weight-averaged filter response [231]. CSRT worked reliable on the surgical
training videos, only in case of abrupt motions of the tools required the re-selection of the
region of interest. All surgical tools’ x and y camera coordinates were saved.
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Fig. 4.5. SURG-TLX values (0–20) of medical professionals first to third trials (first row) and novices
(second row). Asterisk (*) notes if the cyst dissection was successful.
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TABLE 4.7
STATISTICAL COMPARISONS BETWEEN MEDICAL PROFESSIONALS (MP) AND THE CONTROL GROUP

(CG). MEAN AND STANDARD DEVIATION (SD) VALUES ARE REPORTED FOR BOTH GROUPS BASED ON

SURG-TLX CRITERIA. P VALUES ARE SIGNED AS MP/CG WHERE MP AND CG GROUPS WERE

TESTED. *0.001<P<0.05 (STATISTICALLY SIGNIFICANT); **P<0.001 (STATISTICALLY EXTREMELY

SIGNIFICANT); NOT SIGNED: STATISTICALLY NOT SIGNIFICANT.

SURG-TLX MP mean MP SD CG mean CG SD p value (MP/CG)

Mental demands 2.36 1.63 14.89 3.18 0.0001**

Physical demands 7.41 3.89 14.78 2.33 0.0002**

Temporal demands 3.73 2.83 6.22 2.91 0.0072

Task complexity 8.73 4.27 12.78 3.35 0.0359*

Situational stress 1.91 1.22 14.67 2.24 0.0002**

Distractions 5.91 7.58 11.78 4.06 0.0552

4.2.7 Skill classification
The final dataset contained 9 parameters (dissector x and y coordinates, scissors x and y
coordinates, clipper x and y coordinates, force data x, y and z directions) for each (20)
human cases. Force data was synchronized with the image data through the recorded
timestamps. Each measurement was built of 94068 frames recorded with 30 FPS, because
the longest measurement was such long, and due to the classifier only accepts input data
with the same length, other measurements were padded with zeros. In this work, mul-
tivariate time series classification was done with a Fully Convolutional Neural Network
(FCN). FCN is known of its efficiency for semantic segmentation on images, and it shows
very good performance for time series classification as well. The used FCN architecture is
built of a convolutional layer followed by a batch normalization layer (for speed and gen-
eralization reasons) and a Rectified Linear Unit (ReLU) activation layer based on the work
by Wang et al. (Fig. 4.4) [13]. The convolution operation is done by three 1D kernels. The
convolution block is built of a convolutional layer:

y = W ⊗ x+ b, (4.1)

where y is the output of the convolutional layer, calculated from the weights (W ) and bias
(b) with a convolution operation (⊗). Y will be the input of the batch normalization layer
(BN):

s = BN(y), (4.2)

and based on the output of it (s), the output of the ReLU activation layer (h) can be
calculated:

h = ReLU(s). (4.3)

The NN was built by stacking three convolution blocks with the filter sizes (64, 64, 64)
in each block. The features are then fed into a global average pooling layer, and the final
label is produced by a softmax layer.
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TABLE 4.8
LEARNING CURVE WERE ASSESSMENT BETWEEN 1ST TO 2ND , 2ND TO 3RD AND 1ST TO 3RD TRIALS.

*0.001<P<0.05 (STATISTICALLY SIGNIFICANT); **P<0.001 (STATISTICALLY EXTREMELY

SIGNIFICANT); NOT SIGNED: STATISTICALLY NOT SIGNIFICANT.

SURG-TLX p value (1st to 2nd) p value (2nd to 3rd) p value (1st to 3rd)

Mental demands >0.05 >0.05 >0.05

Physical demands >0.05 >0.05 >0.05

Temporal demands >0.05 >0.05 >0.05

Task complexity 0.0426* >0.05 >0.05

Situational stress >0.05 >0.05 >0.05

Distractions >0.05 >0.05 >0.05

4.2.8 Subjects
In my research, 20 set of experiments were conducted by 7 subjects: 3 non-medical
novices as a control group, 1 very experienced resident with 51–100 hours in MIS, 1
experienced resident with 31–50 hours in MIS, an expert surgeon and an expert surgeon
in MIS. All subjects repeated the experiments several times (3 for each except 2 for the
expert surgeon). The groups contained both male and female subjects, every subject was
right-handed. The ages of the subjects were 25–61 years. None of the participants had
experience in robotic surgery. Only the residents had experience in laparoscopic training
in a trainer box (between 2 and 50 hours). Participants had very few or no experience in
video games.

4.2.9 Results
Outcome

From 20 tests, 7 were successful (dissecting the outer layer without damaging the cyst);
the expert MIS surgeon was successful for all 3 times, the expert surgeon was successful
at the second trial, one resident could do the task for the second time, and one novice
was successful for both the second and the third times. The clipping task was performed
successfully by every subjects.

Workload analysis

Statistical differences were tested between the medical professionals (MP) and the control
group (CG) with Mann-Whitney U-tests (4.7,4.8, 4.5). It was very high significance be-
tween MP and CG in the case of mental demands, physical demands, and situational stress
(p value was less than 0.0001, 95 % confidence interval), and a significant difference in
the case of task complexity (p<0.05). There were no significant differences in temporal
demands and distractions. Learning curve was tested along SURG-TLX criteria as well
based on Wilcoxon signed-rank tests. Statistical differences were studied for all cases (and
1st to 2nd, 2nd to 3rd and 1st to 3rd). In this case, only task complexity showed significant
differences for the subjects between the first and the second trial (p<0.05).

80



Fig. 4.6. Surgical training environment validation (applicability for laparoscopy training, similarity of
motions, anatomical similarity, simulation of stress) based on only medical professionals. Results showed
good assessment for applicability, very good for movement similarity, acceptable for anatomical similarity
and moderate for stress simulation.

Phantom validation

For phantom validation reasons, all MP participants had to fill a questionnaire about the
phantom’s applicability, the movements’ similarity, the anatomical similarity and stress
simulation. Results showed good assessment for applicability (mean value: 4.0/5), very
good for movement similarity (mean value: 4.5/5), acceptable for anatomical similarity
(mean value: 3.5/5) and moderate for stress simulation (mean value: 3.0/5) (Fig. 4.6).

Autonomous non-technical skill assessment based on sensory data

FCN classified the recorded sensory data based on the class labels defined by SURG-
TLX. All data (forcex, forcey, forcez, dissectorxy, scissorsxy, clipperxy) were tested and
the combinations of them (force data and all instruments’ path, dissector with scissors
path and force data, dissector with scissors path with forcez). Class labels were calculated
from SURG-TLX results: every answer below the average received 0, and answers which
were higher than the average got 1 as a class label. Based on this method, in the case of
experience, mental demands and situational stress class labels were the same. Physical
demands, temporal demands, task complexity and outcome determined different class la-
bel sets. Skill classification with FCN was validated with Leave One Out Cross-Validation
(LOOCV), where each observation is considered as the validation set and the rest of the
observations are considered as the training set. The accuracy averages of the 20 iterations
can be found in Table 4.9 and Table 4.10. The best classification was done on temporal
demands based on the z component of the used forces (85 % accuracy). The classification
of temporal demands showed higher overall accuracy compared to other metrics based on
the path of the dissector and the scissors with the z component of the used forces (70 %
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TABLE 4.9
FCN-BASED AUTONOMOUS SKILL CLASSIFICATION ACCURACY RESULTS ALONG THE CLASSES

DEFINED BASED BY SURG-TLX, EXPERIENCE AND EXPERIMENT OUTCOME (Dxy : DISSECTOR PATH;
Sxy : SCISSORS PATH; Cxy : CLIPPER PATH) WITH LOOCV VALIDATION. BLUE DENOTES THE

BEST RESULTS.

Class labels forcex forcey forcez forcexyz Dxy Sxy Cxy

Experience/Mental
demands/Situational
stress

0.75 0.5 0.45 0.45 0.5 0.4 0.25

Physical demands 0.35 0.5 0.55 0.4 0.6 0.6 0.6

Temporal demands 0.55 0.65 0.85 0.6 0.55 0.45 0.55

Task complexity 0.5 0.5 0.55 0.55 0.65 0.4 0.45

Distractions 0.3 0.5 0.35 0.4 0.5 0.5 0.45

Outcome 0.45 0.55 0.55 0.35 0.55 0.55 0.5

TABLE 4.10
FCN-BASED AUTONOMOUS SKILL CLASSIFICATION ACCURACY RESULTS ALONG THE CLASSES

DEFINED BASED BY SURG-TLX, EXPERIENCE AND EXPERIMENT OUTCOME WITH COMBINED INPUTS

(Dxy : DISSECTOR PATH; Sxy : SCISSORS PATH; Cxy : CLIPPER PATH) WITH LOOCV VALIDATION. BLUE

DENOTES THE BEST RESULTS.

Class labels Dxy , Sxy , Cxy , forcexyz Dxy , Sxy , forcexyz Dxy , Sxy , forcez

Experience/Mental
demands/Situational
stress

0.5 0.4 0.65

Physical demands 0.25 0.35 0.35

Temporal demands 0.65 0.6 0.7

Task complexity 0.4 0.55 0.5

Distractions 0.45 0.6 0.5

Outcome 0.5 0.4 0.35
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accuracy) or other combinations. This correlates with the subjective opinion of subjects as
well: according to an intermediate skill level resident the experiment was very rushed, and
while based on the experience/mental demands/situational stress the resident got a class
label 1, but in the case of temporal demands, the class label was 0 based on SURG-TLX.
It suggests that experience can help to cope with stress, but it is not necessarily related
to temporal demands, which can be autonomously measured with high accuracy based on
the tool paths and the z component of the used forces. Another higher accuracy (75 %)
was resulted in the case of classifying mental demands/situational stress with the x com-
ponent of the used forces. For the other cases, moderate or low accuracy were seen in the
classification.

Limitations

While this research has highlighted the promise of using tool motion and force data to as-
sess non-technical skills within surgical training, it is essential to recognize inherent lim-
itations in the approach. One noteworthy constraint is the possibility that students, driven
by the goal of achieving high scores within the training system, might prioritize minimiz-
ing applied forces over the thorough mastery of proper surgical techniques. This raises the
concern that learners could develop a ’score-driven’ mindset, potentially compromising
the educational objectives. To address this limitation, future research and practical im-
plementations must carefully navigate the balance between performance metrics and the
acquisition of comprehensive surgical expertise. It is crucial to consider how the train-
ing system can offer constructive feedback and guidance that encourages both efficient
execution and the cultivation of genuine surgical skills.

The statistical analysis and machine learning method relied on a relatively small dataset,
which may result in potentially erroneous conclusions, despite the appropriate selection of
methods. Additionally, the confidence interval in the statistical analysis was set at 95%,
indicating a 5% probability of reaching an inaccurate conclusion. Future research projects
should prioritize conducting similar studies with larger datasets to enhance the robustness
of findings.

4.2.10 Conclusion of automated non-technical skill assessment in la-
paroscopic training

In this section, autonomous non-technical surgical skill assessment was presented in la-
paroscopic cholecystectomy training. The training was studied with workload assessment
(SURG-TLX) and an autonomous non-technical skill assessment approach, based on an
FCN with image-based and force input data. Laparoscopic phantom training and workflow
were introduced to simulate stressful situations during surgery (bleeding, time-critical re-
action, distractions, physical demands). 20 trials were recorded, performed by 7 subjects
with different surgical experience. Statistical tests showed significant differences between
the two groups (medical professionals and control group) in the case of mental demands,
physical demands and situational stress (p<0.0001, 95 % CI), and also in the case of task
complexity (p<0.05). There were no significant differences at temporal demands and dis-
traction levels. Learning curve in workload was also studied with Wilcoxon signed-rank
tests; only task complexity resulted significant difference between the first and the second
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trials. Autonomous non-technical skill assessment was done based on image data with
tracked instruments based on CSRT tracker and force data. FCN classification showed
high accuracy on temporal demands classification based on the z component of the used
forces (85 %) and 75 % accuracy for classifying mental demands/situational stress with
the x component of the used forces with LOOCV validation. In this thesis group, the
connection between sensory data and specific NTS was proven. Furthermore, since the
control theory of RAMIS is the same as that of MIS, the methods can be transferred to
RAMIS as well.

4.3 Summary of the Thesis group
Non-technical surgical skill assessment is as important as technical skill assessment in
MIS, while it is not widely studied in the clinical practice, and it is not involved during
training. In this thesis group, I proposed a methodology for autonomous non-technical
skill assessment and workload evaluation in laparoscopic cholecystectomy training. It has
been shown that there are NTS of the surgeon which can be classified based on sensory
data (image and force) during the training with high accuracy. This finding can lead to ob-
jective and autonomous surgical non-technical skill assessment, and the proposed training
environment can be suitable for personalized training as well.
Related publications: [RNE6, RNE7, RNE8, RNE9]
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Chapter 5

A FRAMEWORK FOR SKILL
ASSESSMENT IN THE CASE OF
AUTONOMOUS CAMERA MOTION

5.1 Skill assessment and automation
Since RAMIS operates on soft tissues, automation in this domain can be extremely difficult
due to the constantly changing environment. At the moment, on the market it is rare to see
autonomy over Level of Autonomy (LoA) 1 in RAMIS [20]. RAMIS automation research
is mainly focusing on surgical subtask automation, which belongs to partial/conditional
automation, where the automation of surgemes and motion primitives are necessary as
well. However, the workflow of RAMIS contains subtask elements, where choosing the
proper subtask can be extremely hard, since it can be critical with respect to the patient
outcome. These subtasks can be monotonous and time-consuming, thus automation of
them could decrease the workload on the surgeon. Skill assessment in the case of au-
tomation can be crucial for safety reasons. In this thesis group, a complete framework for
Optical Flow-based surgical skill assessment in the case of autonomous endoscope motion
is introduced to assess surgical skills while automation is employed.

5.2 Visual servoing for the da Vinci Surgical System
Surgeons are facing numerous challenges in the operating room. The endoscopic cam-
era mounted on the Endoscopic Camera Manipulator (ECM) is controlled by the surgeon
through foot pedals by default, which presents a cognitive load [224]. It still poses a ma-
jor risk when the surgical tools are not in the field-of-view of the camera, the tissues can
easily be damaged by the tools. The camera is controlled by the surgeon through foot
pedals by default. A possible solution for reducing the risk associated with the manual
control is the autonomous positioning of the endoscopic camera. Detecting and following
the movements of the Patient Side Manipulators (PSMs) can be achieved by eye-in-hand
visual servoing algorithms using the frames of the endoscopic camera [235].

In this section, an open-source software solution is presented for visual servoing for
camera control of a da Vinci classic with the DVRK [83]. The technique of visual ser-
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Fig. 5.1. The setup of the visual servoing with the dVSS: The eye-in-hand visual servoing can be executed
if the PSMs (detected with markers) are in the field-of-view (FoW) of the ECM.

voing uses visual feedback to control the motion of a robot. The automation of the en-
doscope’s motion can by achieved utilizing visual servoing, by the means of the ECM
follows the movements of the PSMs, therefore the surgical tools are always in the field-
of view of the camera. Developing the open-source software solution for visual servoing
for camera control of a da Vinci classic means creating a more autonomous system for
da Vinci, which is considered to be at LoA 2 [20]. At LoA 2, the system is trusted to
complete certain tasks or sub-tasks in an autonomous manner, such as suturing or blunt
dissection. The visual servoing feature of the proposed framework can assist through var-
ious parts of the whole surgery, and its tasks do not involve decision making. In this
recent work, the focus is on the visual servoing robot control, thus a marker-based tool
detection was employed. The codes of this work are available at https://github.com/ABC-
iRobotics/irob-saf/tree/visual servoing as a part of the iRob Surgical Automation Frame-
work (irob-saf) [12].

5.2.1 Software frameworks
The proposed method uses eye-in-hand visual servoing approach [235]; it allows the au-
tonomous movements of the camera by receiving an excepted goal function (expected
view). It relies on stereoscopic images as an input, the positioning of the ECM operates in
3D. The tool detection was achieved via ArUco codes (marker-based detection) placed on
the PSM [236]. The schematic figure of the setup is presented in Fig. 5.1.

Robot Operating System

The Robot Operating System1 (ROS) is a flexible framework for the modular development
of robot software [237]. It is a collection of functions, libraries and conventions, aiming to
simplify the development of complex and robust robot applications across a wide variety
of platforms. It consists of nodes, which are responsible for specific functions. Those

1https://www.ros.org/
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communicate with each other via messages though channels called topics. The messages
are specific data structures serving various purposes.

IROB Surgical Automation Framework The purpose of the irob-saf2 is to facil-
itate automation of surgical subtasks for the dVSS with the DVRK, offering a modular
architecture with built-in functionalities, like parameterizable surgemes, interface to the
DVRK or computer vision algorithms and image pipeline from the endoscope [12]. In this
this part of the thesis work, the goal was to extend the irob-saf with depth-inclusive
visual servoing for the ECM.

5.2.2 Extraction of the Instrument Position
As mentioned above, ROS offers extensive stereo vision support, from stereo camera cal-
ibration to the calculation of the 3D point cloud of the scene. Utilizing this infrastructure
the 3D position of the ArUco marker is calculated as follows. The image coordinates of
the corners of the detected ArUco marker is received alongside the 3D point cloud cal-
culated by ROS. The image coordinates of the marker’s center is then calculated from
the received corners; these coordinates are used to extract the marker’s 3D position from
the point cloud using the Point Cloud Library (PCL)3. The 3D position of the marker is
published to the subtask level node.

Robot Control with Visual Servoing

To avoid tissue damage, the purpose of the developed visual servoing algorithm is to keep
the tracked surgical instrument within the bounds of the endoscopic camera image, while
avoiding unnecessary movements of the ECM, as it might disturb the surgeon. Thus,
instead of implementing a controller that would keep the instrument in the center of the
image by constantly adjusting the ECM pose, the following approach is proposed. The
desired position of the instrument (D) and a distance threshold (t) are to be defined in the
camera frame (Fig. 5.1) by the user; the position of the instrument (currently and ArUco
marker, M ) is tracked by the stereo camera of the ECM (Fig. 5.2). If the distance of the
instrument and the desired position exceeds the threshold t in any direction, the ECM is
moved to a new pose (TCP’), where the instrument’s position in the camera frame is the
same as the desired position; it is in the center of the image again. The pose TCP’ is
calculated as follows.

The motion of the ECM is restricted in a way so that at the point of insertion (inside
the trocar) lateral motion is not possible; it would potentially harm the patient. This point
is the so-called RCM, which is also the origin of the base frame of the ECM (Fig. 5.2).
Due to this lateral restriction, the ECM has 4 DoF: pivot around the RCM, insertion and
rotation along the shaft.

The position of points D and M is defined/measured in the coordinate frame of the
camera (cam, Fig. 5.1). As the marker is intended to keep near the center of the camera
image, in distance q – defined by the surgeon or the assistance – from the camera (Fig. 5.2),
the homogeneous coordinates of desired position of the marker is written as follows:

2https://github.com/ABC-iRobotics/irob-saf
3https://pointclouds.org/
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Fig. 5.2. The concept of following the instrument using visual servoing on the da Vinci surgical System.
The TCP’ pose of the Endoscopic Camera Manipulator (ECM) to be calculated, so the instrument is seen at
the desired position in the camera image.

dcam =
[
0 0 q 1

]T
. (5.1)

To calculate the new TCP’ pose, the coordinates of those points need to be converted
to the TCP frame (Fig. 5.2). In the case of a 0 degree endoscope, this – by neglecting the
displacement of the the camera along axis x – is simply a π rotation around axis x, with
homogeneous transformation:

TTCP,cam =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 . (5.2)

Then, the coordinates of the points D and M in the base frame are calculated using the
position and orientation of TCP, received from the DVRK, converted to homogeneous
transformation TTCP,base.

Thanks to the ECM’s restricted form of motion, the calculation of the pose TCP’
gravely simplifies by conversion to a spherical coordinate system around the origin of the
base frame. Defining the spherical coordinates of the points D and M in the base frame
would easily result in inclination π, as those points are typically located in the vicinity
of the elongation of axis zbase (Fig. 5.2). If the inclination is 0 or π, the azimuthal angle
is arbitrary; that ambiguity is to be avoided in this application. Thus, the frame of the
spherical coordinate system (sph) is rotated by π/2 along axis x:

Tsph,base =


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

 . (5.3)
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The homogeneous coordinates of points D and M in the frame sph are then calculated by

dsph = Tsph,base · T−1
TCP,base · TTCP,cam · dcam (5.4)

and
msph = Tsph,base · T−1

TCP,base · TTCP,cam ·mcam (5.5)

consecutively, where dcam and mcam are the homogeneous coordinates in the camera
frame. The spherical coordinates r (radial distance), θ (inclination) and ϕ (azimuthal
angle) of those points are calculated by the following formulae:

r =
√
x2 + y2 + z2, (5.6)

ϕ = arctan2(y, x), (5.7)

θ = arccos
z

r
. (5.8)

By knowing the spherical coordinates of the desired and the current tool locations, the
difference of those coordinates can be used to get the transformation from TCP to TCP’.
The angular differences:

∆ϕ = ϕM − ϕD, (5.9)

∆θ = θD − θM , (5.10)

corresponding to the rotation from TCP to TCP’, and distance

∆r = rM − rD (5.11)

corresponding to the insertion of the endoscope, are defined. Important to note that the ∆θ
is intentionally defined with opposite sign, as the the direction of the inclination angle is
opposite to the rotation defined by axis x.

From the spherical coordinates it is easy to see that the required length of the ECM’s
insertion that ensures the q distance from the tracked instrument is s′ = s + ∆r, where s
is the current length of insertion (Fig. 5.2). The vector for this translational movement is
calculated as follows:

tTCP =
[
0 0 ∆r

]T
, (5.12)

tbase = RTCP,base · tz,TCP , (5.13)

where RTCP,base is the rotational part of TTCP,base. The homogeneous matrix for this
translation is:

Tr =

[
I tbase
0 1

]
. (5.14)
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As the azimuthal angle defines a rotation around axis z, and the inclination a rotation
around axis x, the required rotations from the differences are written:

Taz =


1 0 0 0
0 cos(∆θ) − sin(∆θ) 0
0 sin(∆θ) cos(∆θ) 0
0 0 0 1

 . (5.15)

Similarly, as inclination defines the rotation along axis z:

Tinc =


cos(∆ϕ) − sin(∆ϕ) 0 0
sin(∆ϕ) cos(∆ϕ) 0 0

0 0 1 0
0 0 0 1

 . (5.16)

Finally, using these transformations the desired pose of the ECM TCP’ is calculated:

TTCP ′,base = T−1
sph,base · Tinc · Taz · Tsph,base · Tr · TTCP,base. (5.17)

Using the desired pose of the ECM, a Cartesian trajectory is generated and being sent
to the controller to move the ECM into that pose; positions are generated by linear interpo-
lation, the orientation by spherical linear interpolation (Slerp), offered by the Eigen C++
library4.

5.2.3 Results of visual servoing
To validate the proposed visual servoing method, experimental scenarios were set up,
where the measurement of the accuracy were tested. The tests on the dVSS were done
in DVRK teleoperated mode with a phantom representing a gallbladder and its environ-
ment. During the test setups, the arms were controlled from the master side by an operator,
except the ECM, which was moved autonomously by the proposed method. The anatomi-
cally correct surgical phantom (originally created for modeling laparoscopic cholecystec-
tomy) provided the background for the tests, and an ArUco code was placed on the moving
PSM (Fig. 5.3).

To determine the accuracy of the system, the ArUco marked PSM was moved in x, y
and z directions by the operator. The Cartesian position of the ECM alongside the joint
angles related to yaw, pitch and insertion of the endoscope were tracked, then shown in the
graphs to easily determine if the created system functions properly. In the experiments, the
endoscopic camera of the da Vinci was used with the original 640 × 480 pixels resolution
camera of the da Vinci Classic.

First, an experiment of one instrument, with an attached ArUco marker moving in the
x axis of the coordinate frame of the camera was performed. The results of the distance
from the desired position in the x direction, the yaw angle and x component of the ECM’s
Cartesian position are shown in Fig. 5.4.

Similarly, in the second experiment, the marked instrument was moved along the y axis
of the coordinate frame of the camera, while additionally to the marker’s distance from

4http://eigen.tuxfamily.org
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Fig. 5.3. Testing the proposed visual servoing method on the da Vinci Research Kit. An ArUco code was
fixed on a surgical tool for instrument tracking, and the endoscope followed the tool’s displacements. The
tests were done in a surgical phantom environment.

the desired pose in this direction the pitch and the y component of the ECM’s Cartesian
position were recorded (Fig. 5.4).

In the third experiment, the instrument was moved along the z axis of the coordinate
frame of the camera; apart from the z component of the distance of the marker from the
desired position and z component of the position of the ECM, the values of the insertion
joint were captured (Fig. 5.4).

In Fig. 5.4, the distance threshold value of ±20mm is marked with red horizontal lines.
The two threshold lines determine a limited area corresponding to the ideal point, where
the ECM does not move. Outside this area, the ECM performs its corrections to reach the
desired point determined by the thresholds as shown in those figures. The desired values
along both axes x and y were 0 (corresponding to the center of the image), and 30 mm
along z axis (corresponding to 30mm distance from the camera).

The data of three graphs above are shown together, alongside the Euclidean distance
from the desired position in Fig. 5.4, where the relationship between the directions of the
marker’s displacement and the changing of corresponding joint coordinates can be ob-
served. In Fig. 5.4a, the absolute value of the instrument displacement in x, y, z directions
are shown with the Euclidean distance of the marker from the desired point. In Fig. 5.4b,
corresponding joint coordinates of the ECM (yaw, pitch, insertion) are shown. If the in-
strument displacement in x direction is higher than the set threshold, the corresponding
joint coordinate of the ECM, the yaw will alter. Similarly, the pitch corrects the instru-
ment displacement in y direction, and the instertion corrects the instrument displacement
in z direction. If the movements in the experiments were complex, two or more joints
were moving in the given interval.

5.2.4 Limitations
While the results have shown very promising outcomes in correcting distances in all direc-
tions, but it is important to note that this solution relies on marker-based tracking, which
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Fig. 5.4. Results of one-marker setup for x (a–c), y (d–f) and z (g–i) axes experiments. The red horizontal
lines are the given threshold value for the displacement. J–k: results of one-marker setup for all directions
shown in one graph. The red horizontal line is the given absolute threshold value for the displacement length.
The purple line is the Euclidean distance of the marker from the desired point.

proves highly reliable in several scenarios (considering factors such as tool velocity). On
the other hand, it cannot be applied in a real clinical setting. This problem and a potential
solution are introduced in Thesis group 1. Since the proposed visual servoing method was
tested on the dVSS with the DVRK, the clinical teleoperation mode was not available,
only the research mode was accessible. In this case, teleoperation is sensitive to abrupt
motions and larger rotations. Consequently, studies on human experiences may not be
directly applicable. Nevertheless, the general feedback from 10 medical students has been
positive. Addressing surgeon needs holds significance in the field of automation; however,
it remains an underexplored area of study. Based on feedback from surgeons, it becomes
evident that delving into this domain could yield substantial benefits.

5.2.5 Conclusion of visual servoing
In this section, a marker-based visual servoing method for RAMIS was proposed to auto-
mate camera moving, which can help the surgeon focusing only on the instrument control
in DVRK enhanced research mode. The usage of visual markers ensured the elimination of
a significant fraction of vision-related errors, thus during the development and validation
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the main focus could remain on the robot control aspect of the visual servoing problem.
The outcome showed that the framework can be considered a reliable base for future work.

5.3 Autonomous image-based surgical skill assessment based
on Optical Flow

Image-based surgical skill assessment can be widely used across surgical domains, since
training videos are available. In this section, a two dimensional endoscopic image data-
based surgical skill assessment method is proposed, which can be used in any available
surgical training videos, if the surgical skills are annotated. For skill assessment, Optical
Flow was chosen as an objective video feature, because of its robustness and good compu-
tational time performance. If the camera is automated, with proper optical flow ego-motion
filtering (which is also discussed in this Thesis group in Section 5.4), the skills of the sur-
geon can be measured with the proposed method. The codes of this work are available at
https://github.com/ABC-iRobotics/VisDataSurgicalSkill.

5.3.1 Data generation
For 2D image-based skill assessment, the JIGSAWS dataset (Section 3.1.3) was used,
where Optical Flow was applied as a skill feature (Section 3.3.1).

As a first step, a suitable initial frame is found, where both surgical tools are visible,
then user-selected Region of Interest (ROI) are preprocessed and saved. The frames are
first turned gray-scale, then blurred by a median filter, and ran through a binary filter
using adaptive thresholds, in order to denoise the frames, and enable the better detection
of features, using the Shi–Tomasi detector on the respective ROIs.

The resulting output constitutes the initial features to be tracked. Each video is tra-
versed, set to the initial frame, the features of which are then tracked by the Kanade–Lucas
OF. The features are extracted from each frame of the video, and collected in a list, with the
dimensions: frame number×sample size×2×2. This list is then iterated through, and
for each frame’s data a row of 240 features – made up of the respective OF and Positional
information of each tool – is added to the output. Given the ROI data and the generated
output, grouping the data according to the surgical tasks and the expertise level of users
constitutes the final output. This is accomplished using the sliding window preprocessing
method implemented by Anh et al. for their benchmark [238], to process the multivariate
time series and separate chunks of the data into uniformly sized local windows, thereby
enabling the evaluation of the data with the same networks originally designed for the
kinematic data of JIGSAWS. The workflow can be found in Fig. 5.5.

5.3.2 Classification Methods
To counteract overfitting – i.e., a higher model complexity than that of the data itself, learn-
ing outliers and noise as part of the pattern, thereby losing on generalisation-capability –
the LOOCV cross-validation technique was used, along with L2 regularization for each of

93



Fig. 5.5. The proposed workflow: First we compute and save the initial samples from each video input
using user-selected Regions of Interest, then by tracking them with the sparse Lucas–Kanade Of – tracking
the movement of both surgical tools independently – creating data files, that are further processed by a
sliding window method, outputting the final input data. Using several different classification methods, it is
possible to determine the users’ expertise.

the methods introduced below. Same padding is used in most places, to keep the dimen-
sions of the output.

output width =
W − Fw + 2P

Sw

+ 1, (5.18)

output height =
H − Fh + 2P

Sh

+ 1, (5.19)

where W and H are the width and height of input, F are filter dimensions and P is the
padding size (i.e., the number of rows or columns to be padded). In case of same padding,
the following stands:

output height = ceil

(
H

Sh

)
, (5.20)

output width = ceil

(
W

Sw

)
. (5.21)

Convolutional Neural Network

Commonly used for classification, segmentation and image processing, Convolutional
Neural Networks (CNNs) ensure translation invariance and parameter sharing through
convolution (essentially specialised sliding filter operations) [239, 240]. They are based
on the assumption that nearby data points are more closely correlated than further ones.
In the used data (see Section 5.3.1), the two surgical tools are separated, therefore closer
datapoints are more likely to belong to the same tool. CNN relies on such local dependen-
cies, and in this case this is further supported by the the arrangement in which the Optical
Flow displacement values – describing speed in relation to the framerate – and the Position
pixel-coordinates are side-by-side, with the rows corresponding to timestamps/frames.

The network uses two one-dimensional convolutional layers – with the Rectified Lin-
ear Unit (ReLU) activation functions, introducing non-linearity to the system with the
equation ReLu(z) = max(0, z) followed by batch normalization layers. Then a one-
dimensional Global Average Pooling (GAP) is applied to reduce data complexity and
avoid overfitting by reducing the total number of parameters in the models. Ultimately
a Dense layer with softmax activation (softmax(zi) = exp(zi)

Σjexp(zj)
) is used to create the

output as a vector of three, corresponding to the three classes of the classification.
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Long Short-term Memory

Long Short-term Memory networks (LSTMs) are specialised Neural Networks by design,
ideal for time series data analysis [241]. Using the combination of three types of gates (in-
put, output and forget) and a dedicated memory cell – storing the internal representation of
the learned information – they are able to record long term data representations. Their use
is beneficial in surgical skill assessment, where the sequentiality of actions and precision
movements is relevant for the successful execution of surgical subtasks. Suitable subtask-
segmentation may be required, in order to avoid the confusion of patterns belonging to
different sequences.

The input gate takes the input from the current time-stamp, xt ∈ RN , the output from
the previous LSTM-unit, ht−1, and the previous memory cell, ct−1. LSTMs make use of
the sigmoid activation function (σ(z) = 1

1+e−z , bounded between [0, 1]) to process the
input information:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi). (5.22)

Forget gates serve as a sort of selection method. This one layer neural network determines
whether the given data should be kept or removed from the current internal state:

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf . (5.23)

The learned knowledge is stored in memory cells. These cells are updated by combining
(⊙) the memory cell with the new information, where (⊙) denotes the Hadamard product:

ct = ft ⊙ ct−1 + it ⊙ tanh(Wxcxt +Whcht−1 + bc). (5.24)

And finally, the output gate controls the information passed onto the next LSTM block:

ht = ot ⊙ tanh(ct), ot = σ(Wxoxt +Whoht−1 +Wcoct + bo). (5.25)

CNN+LSTM

A straightforward combination of the previous two models: two convolutional layers
– batch optimization and ReLu activation functions – followed by two LSTM blocks,
CNN+LSTM is a slightly more complex Neural Network architecture. Among others, Li
et al. [242] have demonstrated high accuracy predictions using the combination of these
methods. The temporal information of the convolutional layers’ outputs is processed by
the LSTM blocks, in order to learn contextually, but from an already processed informa-
tion source.

Residual Neural Network

Primarily used for classification tasks, using so-called skip connections, as shortcuts to
solve the degradation problem [243] – essentially short circuiting shallow layers to deep
layers (Residual Neural Networks (ResNets) enables the creation of deeper networks with-
out loss of performance). They are reliable techniques even within smaller networks. The
model of the benchmark also consists of only 3 blocks, meaning that it does not utilize its
strength to the fullest (given, that there are not many layers to skip), but it still can perform
accurate classification.
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Convolutional Autoencoder

Traditionally used for data compression, dimensionality reduction and the denoising of
data without significant information loss, an autoencoder – often symmetric, built up of
two blocks: an encoder and a decoder – is an unsupervised machine learning model [244].
The encoder aims to create a copy of its input as an output, reverse engineering the problem
by trying to find the right filter. The autoencoder created by Ahn et al. [238] is built
using convolutional layers. It is also common to use fully-connected layers. The encoder
compresses the input time series into a latent space representation, then the network tries
restructuring it into the original input data in the decoder. For classification, after the
network has been fully trained, the encoder’s output is fed to an SVM classifier.

Frequency domain transformations

The Discrete Fourier Transformation (DFT) and the Discrete Cosine Transformation (DCT)
are traditionally used to transform time series data from the time domain to the frequency
domain. The use of frequency features in surgical skill assessment has been proven to
perform well by Zia et al. [245].

The main assumption of these techniques is that the more competent a user is in the
given skill, the smoother and more predictable the time series representation will be. The
initial X ∈ RN×L time series, where N is the feature size (240) and L is the sample
size (the given videos’ frame number) is initially separated into univariate time series, the
frequency coefficients of which are calculated and concatenated with a frequency matrix
Y ∈ RN×L.

After computing matrix Y, iterating through each row, the highest peaks are kept, others
discarded. With F < L being the number of peaks kept, the reduced matrix can be
calculated Ŷ ∈ RN×F . The F highest peaks represent the most significant frequencies
of the input segment. Classification is achieved by converting Ŷ into a one-dimensional
matrix.

The two methods only differ essentially in the frequency matrix used:

DFT: Yk = ΣL−1
t=0 xl × e−

i2πkl
L , (5.26)

DCT: Yk =
1

2
x0 + ΣL−1

l=1 xl × cos[
π

L
l(k +

1

2
)]. (5.27)

The periodicity of DFT breaks the continuity, while DCT is fully continuous.

5.3.3 Results of optical flow-based surgical skill assessment
Each method were run 5 times for each generated input file. Within each run there were 5
trials, using the LOOCV cross-validation method, then the mean accuracy was calculated.

The intermediate class is prone to misclassification [246]. Funke et al.’s hybrid 3D
network has misclassified every intermediate surgeon into either expert or novice, using
Optical Flow data for knot-tying [247]. This may partially be due to data disparity, as in-
termediate and expert subjects are underrepresented in comparison to novices [248]. Anh
et al.’s benchmark also faced issues with the classification of intermediate users [238].
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TABLE 5.1
THE PERFORMANCE OVERVIEW OF EACH METHOD IN THE CASE OF 2 OR 3 CLASSES, RESPPECTIVELY.

Method Eval.
class
num.

Min.
Run (%)

Max.
Run (%)

Min.
Trial (%)

Max.
Trial (%)

CNN Model
2
3

73.7
49.6

79.12
66.83

54.34
35.69

93.67
75.44

CNN SVM
2
3

53.97
28.15

66.53
56.8

29.45
43.65

94.68
70.59

LSTM Model
2
3

51.16
40.48

79.62
62.19

24.44
15.25

90.64
69.63

LSTM SVM
2
3

40.95
30.2

80.44
60.87

22.22
15.25

91.94
70.86

CNN+
LSTM Model

2
3

74.69
56.12

83.19
73.09

56.42
46.37

93.65
82.65

CNN+
LSTM SVM

2
3

58.987
33.12

73.44
68.57

28.27
5.15

93.23
82.94

ResNet Model
2
3

73.75
47.93

83.54
70.25

54.55
33.46

95.74
80.0

ResNet SVM
2
3

54.21
25.92

73.64
61.5

23.3
7.15

93.04
79.17

convAuto SVM
2
3

58.58
30.82

75.52
52.57

33.33
16.14

93.21
77.36

Given this, intermediate subjects were excluded from the main evaluation, and only com-
paratively analysed 3-class classification, the result of which is presented in Table 5.1.

The following results have been obtained without the data of intermediate subjects,
which means binary classification.

CNN

With a minimum standard deviation of 1.43 % and best mean accuracy of 80.72 %, CNN
has responded well to the data.

LSTM

Although its best mean accuracy of 80.44 % is promising, its standard deviation ranging
from 5.97 % to 15.49 %, as well as a high number of trials with zero true positives for
experts show that LSTM by itself is not complex enough to fit to the data.

CNN+LSTM

Able to counteract the shortcomings of the simple LSTM, it improved on the results of both
models, with 83.19 % maximum mean accuracy and consistently less than 2 % standard
deviation. Its highest mean accuracy was 79.19 %, even outperforming the more complex
ResNet model (78.65 %).
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ResNet

ResNet modelled the data the best, with 84.23 % highest mean accuracy and 1.36 % stan-
dard deviation. Having the highest number of layers, it suggests that the data scales in
performance with model complexity.

convAuto

The only unsupervised method in the benchmark, convAuto reached a maximum of 79.77
%, with an average of 5 % standard deviation. Its highest mean of 67.78 % is among the
lower ones, but given that it relies on the SVM classifier, its efficacy could be improved
by tuning its hyperparameters, or employing a kernel trick.

5.3.4 Results by surgical tasks
Knot-Tying

Fig. 5.6. Knot-Tying accuracies without intermediates. The best perfoming methods were: ResNet and
CNN and LSTM.

Ming et al. found Knot-Tying to be the easiest surgical task to assess with both STIP
and iDT [133]. The proposed method is similar in principle to their STIP method, as it
also tracks the movement of interest points/features over time.

When it comes to the model evaluation, even the worst average accuracy (produced by
LSTM) was at 74.75 %. Regarding SVM evaluation the same value was 62.1 %. Coin-
cidentally the highest SVM evaluated accuracy (80.43 %) and the highest average SVM
accuracy (76.07 %) were also by LSTM. Given that model-evaluated LSTM results had
many outliers, SVM could improve the recall and precision. For the best performing con-
figuration of LSTM, 8 out of 25 trials (32 %) had 0 expert true positives. To measure the
efficacy specifically for expert classification, the Recall metric needs to be used:

ExpertRecall =
ExpertTruePositive

NumOfExpertsInTrial
. (5.28)

The highest individual expert recall of LSTM was 89.7 %, but given the 8 cases where the
value is 0, its mean is 24.36 %.
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Overall ResNet, CNN+LSTM and convAuto all performed well for the Knot-Tying
task. LSTM has done well, but its low mean expert recall leaves the need for further
investigation before it could be deemed as reliable. CNN – considered in general to be a
top-performer [246] – has fallen behind. Its highest accuracy was 80.42 %, and highest
mean accuracy 78.38 %. SVM predictions dropped its accuracy below 70 %. ResNet’s
model-based evaluation resulted in the highest accuracy (83.54 %), while the highest mean
accuracy (80.11 %) came from the model-predictions of CNN+LSTM. Figure 5.6 shows
the ranges of accuracies for each used method with Knot-Tying skill data.

Suturing

Fig. 5.7. Suturing accuracies without intermediates. The best performing methods are ResNet, CNN and
CNN and LSTM.

The same observations apply to Suturing as to Knot-Tying: ResNet, CNN+LSTM and
convAuto performed well, LSTM has shown high results in some cases, accompanied
by confusion matrix anomalies (the maximum Expert Recall only being 3.33 %, with an
overall average of 0.22 %), and CNN seemingly performed the worst, even though it still
did so above 75 % on Model average accuracies. Even though Ming et al. [133] also found
that Suturing is harder to classify than Knot-Tying, CNN has been found to be one of the
most reliable methods by the review of Yanik et al. [246]. It is possible that the CNN
model of the benchmark is too small, and it would perform better with higher complexity
and more layers. Figure 5.7 illustrates the accuracy of each applied method, given the
Suturing task.

Needle-Passing

Ming et al. claimed that Needle-Passing was the hardest skill to perform classification
for, because they did not find significant differences between the trajectories of expert and
novice users’ left hand movements [133]. With this data generation method, only LSTM
dropped significantly in efficacy in comparison with its performance on the other skills.

The highest Model average precision (79.74 %) and the highest SVM accuracy (71.58 %)
were both achieved by CNN+LSTM, making it the overall best for the skill of Needle-
Passing. The range of accuracies given all the Needle-Passing data for each method is
illustrated in Figure 5.8.
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Fig. 5.8. Needle-Passing accuracies without intermediates. ResNet, CNN and CNN and LSTM outperform
the other methods.

5.3.5 Performance analysis
The generated data combined with the benchmark of Anh et al. [238] has successfully
outperformed the solutions of Ming et al. [133] in both Suturing and Knot-Tying, and only
slightly fell short of their results in Needle-Passing. The goal was to find a method that can
achieve similar results to the state of the art in the field of surgical skill assessment, while
keeping generalisation and practicality in mind, in order to keep it relevant for manual MIS
training, where 3D and pose information is not available. Table 5.2 presents the detailed
comparison of these methods.

Residual Neural Network performed the best, closely followed by the combined model
of CNN and LSTM. DFT and DCT have performed too poorly to be able to rely on them
for classification. Even though LSTM’s accuracy is high, its confusion matrices showed it
to be unreliable. It has been observed that although the SVM classification decreases the
overall accuracy, it performs more consistently overall. This is likely due to the fact that
SVMs are suspectible to outliers [249]. They perform well in high-dimensional feature
spaces, and although there are 240 features, the number of rows greatly outnumber this.

TABLE 5.2
THE COMPARISON OF THE RESULTS TO THAT OF THE STATE OF THE ART. EVERY METHOD LISTED

HERE USED THE JIGSAWS DATASET AS VISUAL INPUT DATA SOURCE.
Author (Year) Method ST NP KT

Funke et al. (2019) 3D ConvNet
+TSN [247] 100 % 96.4 % 95.8 %

Ming et al. (2021) STIP[133] 79.29 % 87.01 % 72.57 %
Ming et al. (2021) iDT[133] 76.79 % 83.81 % 76.65 %

Lajkó et al. CNN[238] 80.72 % 79.66 % 80.41 %
Lajkó et al. CNN+LSTM[238] 81.58 % 83.19 % 82.82 %
Lajkó et al. ResNet[238] 81.89 % 84.23 % 83.54 %

DFT

DFT and DCT are often evaluated side-by-side, and even though their similarities seem to
outweigh their differences at first sight, it is customary to investigate both, to see whether
these seemingly small differences add up to significant differences in performance. The
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DFT relies on a Support Vector Machine to classify the data based on the feature labels
extracted with the help of the transformation. The results indicate that this method is
not suited to evaluate OF-based data in this form, because even though its highest mean
accuracy (73.83 %) indicates that it has the potential to classify well about two thirds
of the cases, overall it is closer to 50 %, which means that it unable to make reliable
predictions. DFT and DCT work with the assumption that the more experienced someone
is, the smoother their data’s time series is going to be represented in the frequency domain.
This assumption holds well in the realm of kinematics, but OF may lack the sufficient
features, or dimensions for this to hold true. Given an analysis it would seem that these
transformations depend on the quality, rather than the quantity of data.

DCT

The Discrete Cosine Transformation works on similar principles to the DFT, and also
uses a Support Vector Machine for classification. The highest mean accuracy reached
with this method was 78.61 %, but similarly to DFT, it falls short in overall consistent
accuracy. When comparing the two transformations, DCT has a clear edge over DFT –
most likely due to its periodicity, which contrary to DFT does not introduce discontinuity.
DCT outperformed DFT in all three metrics, and it gets close to being efficient enough,
but it is still not suitable for reliable classification.

5.3.6 Conclusion of optical flow-based skill assessment
This part of my thesis work aimed to create a practical, generally applicable solution that
can enable the creation of visual-based surgical skill assessment methods, and can poten-
tially lead to the inclusion of automated skill assessment in the curriculum of minimally
invasive surgical training, introducing benefits such as objectivity, reproducibility, and the
fact that it would not require human expertise. The proposed method outperformed the
state of the art in 2D visual-based skill assessment, with more than 80 % accuracy for all
two from three surgical subtasks available in JIGSAWS (Knot-Tying and Suturing). By
introducing new visual features – such as image-based orientation and image-based colli-
sion detection – or from the evaluation side: utilizing other SVM kernel methods, tuning
the hyperparameters, or using boosted tree algorithms instead, classification accuracy can
be further improved.

5.4 Optical Flow ego-motion filtering
In this thesis group, Optical Flow was proven to be an effective image feature for surgi-
cal skill assessment. However, optical flow-based skill assessment can be a much more
complex problem, when the viewpoint is moving as well; Optical Flow techniques cannot
make a difference between motion originated from moving objects in the space and from
the self-motion of a moving camera. The motion of the viewpoint – called ”self-motion”,
or ”ego-motion” – has to be extracted from the Optical Flow vector field to detect mov-
ing objects in the space. In this section, an Optical Flow ego-motion filtering method for
background motion compensation in the case of a moving viewpoint, with access to the
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robot’s state of motion and depth information is introduced. The result is the Optical Flow
vector field without the flow vectors originated from the movement of the viewpoint. The
proposed method can provide the velocity of the moving object in the space. The codes of
this work are available at https://github.com/ABC-iRobotics/egomotion-filter.

5.4.1 Optical Flow ego-motion compensation method
In the following equations, the method is presented through only one pixel. For ego-
motion filtering, it is necessary to take these steps for the whole image.
Based on the Optical Flow algorithm, the pixel displacements can be calculated; then the
current pixel locations can be calculated:

dx = xi − xi−1, (5.29)

dy = yi − yi−1, (5.30)

where xi, yi is the current pixel location, and xi−1, yi−1 is the previous pixel location. The
pixel to camera coordinate method can be calculated from the camera coordinate to pixel
perspective projection equation:

xi

yi
1

 =


f
sx

0 ox 0

0 f
sy

oy 0

0 0 1 0



Xi

Yi

Zi

1

 , (5.31)

where xi, yi are the pixel coordinates, the intrinsic parameters are the focal length (f ), prin-
cipal point (ox, oy), and pixel size (sx, sy). Xi, Yi, Zi are the camera coordinates. Expand
the perspective projection equation the following equations is derived:

xi =
1

sx
f
Xi

Zi

+ ox, (5.32)

yi =
1

sy
f
Yi

Zi

+ oy. (5.33)

Since the depth information is available (Zi), the point coordinates can be calculated:

Xi =
sx
f
Zi(xi − ox), (5.34)

Yi =
sy
f
Zi(yi − ov). (5.35)

The xi−1, yi−1 previous pixels have to be deprojected with the same method (Eq. 5.34, 5.35).
From the current (Xi, Yi Zi) and previous camera coordinates (Xi−1, Yi1 , Zi−1) and the
elapsed time (dt) the current optical velocity can be calculated (vi,opt):

vi,opt =
(Xi, Yi, Zi)− (Xi−1, Yi−1, Zi−1)

dt
. (5.36)
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To compensate the ego-motion, the reference velocity has to be subtracted from the optical
velocity. For this, transformation the camera coordinates with the transformation matrix
is necessary originated from the robot’s translation and rotation to get the actual camera
coordinates: 

Xi,self

Yi,self

Zi,self

1

 =

[
Rcam2,1 tcam2,1

0 0 0 1

]
Xi−1

Yi−1

Zi−1

1

 , (5.37)

where (Xi,self , Yi,self , Zi,self ) are the current camera coordinates originated from the view-
point’s motion. After that, the reference velocity can be calculated:

vi,self =
(Xi,self , Yi,self , Zi,self )− (Xi−1, Yi1 , Zi−1)

dt
. (5.38)

From vi,opt and the reference velocity vi, self the filtered Optical Flow can be estimated:

vi,filtered = vi,opt − vi,self , (5.39)

where vi,filtered is the 3D ego-motion filtered optical flow.

5.4.2 Results of Optical Flow ego-motion filtering
To test the accuracy of the implemented Optical Flow ego-motion filtering method, two
Universal Robots UR5 manipulators were used [250] because of their accuracy, which was
crucial to test the exact performance of the algorithm. The test scenarios were set up under
the following conditions:

• The first robot arm holds the camera attached to the last link (known transformation
to the robot’s base coordinate system);

• The second robot holds a test object attached to the last link (known transformation
to the robot’s base coordinate system);

• Known transformation between the two robots’ base frame.

Both of the robot arms moved on predefined trajectories with synchronized logging of
their state of motion and the camera frames. The standard Hough transform was employed
for the test object segmentation [251].

For testing purposes, six different scenarios were set up, where the object holder and
the camera holder arm moved under different conditions. The details of the scenarios can
be found in Table 5.3, where every value is shown in the camera coordinate system. The
camera coordinate system is right-handed with the y axis pointing down, x axis pointing
right, and zaxis pointing away from the camera. During the motions, the velocities were
constant. In Table 5.3 vcamlinear

is the linear velocity of the camera, vcamangular
is the

angular velocity of the camera, and vobjlinear
is the test object’s linear velocity. ”Distance”

is the distance between the camera and the moving object at the start point of the recording.
In Scenarios 1, 2 and 3 there were only translational movements performed by the camera
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TABLE 5.3
SCENARIO SETTINGS FOR TESTING THE PROPOSED METHOD; vcamlinear

: LINEAR VELOCITY OF THE

CAMERA, vcamangular
: ANGULAR VELOCITY OF THE CAMERA, vobjlinear

: TEST OBJECT’S LINEAR

VELOCITY, ”DISTANCE”: THE DISTANCE BETWEEN THE CAMERA AND THE MOVING OBJECT AT THE

START POINT OF THE RECORDING.
Scen.# vcamlinear

((x,y,z),
[m/s])

vcamangular
((x,y,z),

[rad/s])
vobjlinear

((x,y,z),
[m/s])

Distance
([m])

1 (0.072, 0, 0) (0, 0, 0) (-0.072, 0, 0) 0.33
2 (0.072, 0, 0) (0, 0, 0) (-0.069, 0.012, 0) 0.33
3 (0.021, 0.018, 0.015) (0, 0, 0) (-0.033, 0, 0) 0.36
4 (0, 0, 0) (0, 0, 0.5445) (0.057, 0, 0) 0.23
5 (0, 0, 0) (1.617, 0, 0) (0, -0.057, 0) 0.24
6 (0, 0, 0) (1.617, 0, 0) (0, -0.057, 0) 0.35

TABLE 5.4
RESULTS OF OPTICAL FLOW EGO-MOTION FILTERING AND MOVING OBJECT STATE OF MOTION

ESTIMATION; STD: STANDARD DEVIATION, MAE: MEAN ABSOLUTE ERROR.
Scen.# Mean vobjlinear

((x,y,z), [m/s]) Std. vobjlinear
((x,y,z), [m/s]) MAE ((x,y,z), [m/s])

1 (-0.071, -0.001, 0) (0.009, 0.002, 0.006) (0.001, -0.001, 0)
2 (-0.068, 0.002, 0.004) (0.013, 0002, 0.009) (0.001, -0.01, 0.004)
3 (-0.016, 0.015, 0.020) (0.029, 0.004, 0.06) (0.017, 0.015, 0.020)
4 (0.058, 0, 0.027) (0.007, 0.002, 0.005) (0.001, 0, 0.027)
5 (-0.001, 0.074, -0.02) (0.004, 0.016, 0.002) (-0.001, 0.131, -0.02)
6 (0, 0.078, -0.006) (0.0023, 0.009, 0.011) (0, 0.135, -0.006)

and the test object. In Scenario 4, 5 and 6, the camera performed rotational movement.
The accuracy was tested with different velocities and different distances.

The main goal of this research was to filter the robot’s motion from the Optical Flow
vector field. To test the accuracy of the background filtering, the ratio of the number of
filtered pixels can be calculated and the number of moving pixels before the filtering in the
background. The background was extracted based on the depth information. These cal-
culations showed promising results for all of the experiments (best case scenario showed
99.6 % accuracy; the worst case was 89.3 %, Table 5.5). Based on these findings, the pro-
posed method shows high accuracy results of ego-motion background filtering. Another

TABLE 5.5
RESULTS OF OPTICAL FLOW EGO-MOTION FILTERING ACCURACY.

Scen.# Background filter accuracy [ %]
1 98.0
2 98.5
3 99.6
4 89.3
5 93.9
6 90.0

approach to measuring the accuracy of ego-motion filtering is to compare the segmented
moving object’s state of motion after the filtering to the object’s reference state of mo-
tion. For this, the test object was segmented on the pre-filtered image and compared the
calculated velocity with the test object holder arm’s velocity. The results can be found in
Table 5.4, where the notions are the same as in Table 5.3. Mean, standard deviation (Std)
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and Mean Absolute Error (MAE) were calculated from a set of frames. Very accurate
results were gotten in the case of Scenario 1, 2, and 4, and low accuracy in the case of
Scenario 2, 5, and 6 (Fig. 5.9). The results suggest that movements without depth chang-
ing (in this case translation in X and Y direction and rotation around Z-axis) can be easier
to filter to the algorithm, but movements including depth changing (in this case rotation
around Y-axis and translation in X, Y and Z directions) can be more complex to filter.
Higher velocity differences between objects of interest and the camera can provide more
accurate results. On the other hand, the relative movement direction between the object
and the camera can be significant as well: if they are moving in the same direction, it is
harder to extract ego-motion (Scenarios 5 and 6). Based on these findings, the proposed
Optical Flow ego-motion filter solution an ideal case is where the robot’s and the moving
object’s state of motion is significantly differs on the projected image plane. It is important
to note that the performance of the method highly depends on the accuracy of the depth
information provided by a depth sensor.

5.4.3 Conclusion of Optical Flow ego-motion compensation
In this section, an Optical Flow ego-motion compensation algorithm was intruduced. It
is based on two-dimensional Farneback dense Optical Flow and image depth information.
The camera’s translational and rotational movement reference frame is known in this ap-
proach. The accuracy was tested with a moving test object, whose state of motion is also
known. The background filter results showed very high accuracy: 94.88 % on average, in
the different test scenarios.

5.5 Summary of the Thesis group
Surgical automation is a next step in the evolution of RAMIS. In this thesis group, a com-
plete framework for OF-based surgical skill assessment in the case of autonomous endo-
scope motion was introduced to assess surgical skills while automation is employed. I pro-
posed an autonomous endoscopic camera motion algorithm with visual servoing, tested on
the da Vinci Surgical System. For surgical skill assessment, an accurate OF-based method
was presented; it outperformed the state of the art, and I have proved its applicability in
RAMIS with a robotic surgery skill-annotated database. Finally, an OF ego-motion com-
pensation method was proposed, to extract only surgical tool motions in the visual scene.
This framework can be employed in future safety examinations, where the motion of the
endoscope is automated and the skills of the surgeon is assessed.
Related publications: [RNE10, RNE11, RNE12, RNE13, RNE14, RNE15]
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Fig. 5.9. State of motion estimation boxplot results by frames after Optical Flow ego-motion filtering in the
different scenarios. Very accurate results were found in the case of Scenario 1, 2, and 4, and lower accuracy
in the case of Scenario 2, 5, and 6.
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Chapter 6

CONCLUSION

6.1 Summary of contributions and future work
In this thesis work, automated skill assessment in manual and Robot-Assisted Minimally
Invasive Surgery (RAMIS) was studied. Endoscopic image data-based surgical technical
skill assessment was shown, additional sensor and motion analysis-based non-technical
surgical skill assessment was proposed, and finally, a framework for image-based skill
assessment in the case of autonomous camera motion was introduced.

Technical robotic surgical skills were discussed, and the possibilities to autonomously
measure these skills. For this, a 2D endoscopic image data-based skill classification
method was introduced, where kinematic data was generated based on the image fea-
tures. Its applicability in skill classification was examined as well. Non-technical surgical
skills are also possible to estimate objectively with kinematic, endoscopic or additional
sensor-based autonomous approaches. I identified the most important non-technical skills
in Robot-Assisted Minimally Invasive Surgery, and the possibilities to assess these skills
manually and autonomously. I showed that with Artificial Intelligence-based methods, cer-
tain non-technical skills can be classified autonomously. Finally, a method for autonomous
camera motion for the da Vinci Surgical System was introduced, and I proposed an Optical
Flow-based method for surgical skill assessment, which can be utilized when automation
is employed. Furthermore, I proposed an Optical Flow ego-motion filter algorithm to ex-
tract only the surgical tool’smotion.

My thesis work has the potential to contribute significantly to the field of autonomous
skill assessment and training for surgical residents. Following my doctoral research, my
focus shifted towards assessing both technical and non-technical skills among surgeon
residents and console surgeons using the da Vinci Xi surgical system, incorporating phys-
iological signal analysis into the evaluation process. This collaborative effort involved
Semmelweis University (Budapest, Hungary) and Queen’s University (Kingston, Canada).
Surgical skill assessment plays a vital role in the emerging field of Surgical Data Sci-
ence (SDS), and I have been applying my expertise to SDS studies at the Austrian Center
for Medical Innovation and Technology (ACMIT). My research findings have also been
integrated into various projects, such as ”Robot-enhanced skill improvement and assess-
ment in minimally invasive surgery” (OTKA PD116121, 2015-2017) and ”Research on
Localization and Object Detection Based on Heterogeneous Sensors” (GINOP-2.2.1-15-
2017-00097, 2018-2021). Additionally, my work in the domain of DVRK-related research
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has been incorporated into irob-saf, a framework for robotic surgery automation. In
my role as an assistant lecturer at the John von Neumann Faculty of Informatics, Óbuda
University, I have had the privilege of sharing my research insights with BSc and MSc stu-
dents. This experience has allowed me to collaborate closely with talented students from
institutions such as Óbuda University, Queen’s University, Eötvös Loránd University, Bu-
dapest University of Technology and Economics, and Pázmány Péter Catholic University.
Looking ahead, my future projects involve non-technical skill assessment with Hungar-
ian console surgeons in clinical settings and the development of an autonomous Surgical
Process Modeling system to support clinical decision-making.
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6.2 New Scientific Results

Thesis group 1
In my first thesis group, I proposed solutions for robotic surgery technical skill assessment,
based on endoscopic camera data.

Thesis 1/I: I proposed a surgical tool pose estimation technique and semantic seg-
mentation algorithm for the da Vinci Surgical System’s articulated tools, applicable to
autonomous technical skill assessment. My surgical tool pose estimation method provides
a generic solution, since it does not require kinematic data or a complete model of the tool.
It performed adequately on 2D endoscopic images, based on shape features and iterative
Perspective n Point transformation method. The method’s accuracy was proven in surgical
skill assessment, where it outperformed the state of the art on knot-tying videos (89.33 %
accuracy).

Thesis 1/II: Ground truth generation for semantic segmentation for the JIGSAWS
dataset was introduced, which was not available before. Using DNN-based methods, I
provided an accurate solution for semantic segmentation of the surgical tools for the JIG-
SAWS dataset, for image-based skill assessment (97.38 % accuracy, 79.91 % dice score)
with TernausNet. Based on my results, image-based surgical technical skill assessment can
be a good alternative to kinematic data-based skill assessment for RAMIS-type systems.

Related publications: [RNE1, RNE2, RNE3, RNE4, RNE5]

Thesis group 2
In my second thesis group, I proved the correlation between objectively measured data and
surgical non-technical skills in robotic surgery.

Thesis 2/I: I proposed a methodology for autonomous non-technical skill assessment
and workload evaluation in laparoscopic cholecystectomy training. The training was stud-
ied with workload assessment (SURG-TLX). Laparoscopic phantom training and work-
flow were introduced to simulate stressful situations during surgery (bleeding, time-critical
reaction, distractions, physical demands). Statistical tests showed significant differences
between the two groups (medical professionals and a non-expert control group) in the case
of mental demands, physical demands and situational stress (p<0.001, 95 % CI). Learning
curve in task complexity resulted significant difference between the first and the second
trials (p<0.05, 95 % CI).

Thesis 2/II: It has been shown that there are non-technical skills of the surgeon which
can be classified based on sensory data (image and force) during the surgeon’s training,
based on a Fully Convolutional Neural Network (with 85 % accuracy). This finding can
lead to objective and autonomous surgical non-technical skill assessment, and the pro-
posed training environment can be suitable for personalized training as well.

Related publications: [RNE6, RNE7, RNE8, RNE9]
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Thesis group 3
I proposed a framework for Optical Flow-based surgical skill assessment in the case of au-
tonomous endoscope motion to assess surgical skills, while ECM automation is employed.

Thesis 3/I: An accurate OF-based surgical skill assessment algorithm was presented;
it outperformed the state of the art, and I have proved its applicability in RAMIS skill
assessment. The results were tested on the JIGSAWS dataset: in suturing, needle-passing,
and knot-tying tasks it provided 81.89 %, 84.23 % and 83.54 % accuracy, respectively,
with ResNet classification.

Thesis 3/II: I proposed an autonomous endoscopic camera motion algorithm with vi-
sual servoing, tested on the dVSS. The method could successfully compensate the dis-
tances between PSMs and the ECM relying on a marker-based approach.

Thesis 3/III: An OF ego-motion compensation method was developed, to extract only
surgical tool motions in the visual scene. This framework can be employed with future
safety examinations, where the motion of the endoscope is automated, while the skills of
the surgeon are being assessed.

Related publications: [RNE10, RNE11, RNE12, RNE13, RNE14, RNE15]

Further publications related to the Ph.D. Thesis and the accompanying research work: [RNENR1,
RNENR2, RNENR3, RNENR4, RNENR5, RNENR6, RNENR7]
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[114] L. Zappella, B. Béjar, G. Hager, and R. Vidal, “Surgical gesture classification from
video and kinematic data,” Medical Image Analysis, vol. 17, no. 7, pp. 732–745,
2013.

[115] A. Malpani, S. S. Vedula, C. C. G. Chen, and G. D. Hager, “Pairwise Comparison-
Based Objective Score for Automated Skill Assessment of Segments in a Surgical
Task,” in Information Processing in Computer-Assisted Interventions, ser. Lecture
Notes in Computer Science, D. Stoyanov, D. L. Collins, I. Sakuma, P. Abolmae-
sumi, and P. Jannin, Eds. Springer International Publishing, 2014, pp. 138–147.

[116] N. Ahmidi, L. Tao, S. Sefati, Y. Gao, C. Lea, B. B. Haro, L. Zappella, S. Khudan-
pur, R. Vidal, and G. D. Hager, “A Dataset and Benchmarks for Segmentation and
Recognition of Gestures in Robotic Surgery,” IEEE Transactions on Biomedical
Engineering, vol. 64, no. 9, pp. 2025–2041, 2017.

[117] S. Jun, M. S. Narayanan, P. Agarwal, A. Eddib, P. Singhal, S. Garimella, and
V. Krovi, “Robotic Minimally Invasive Surgical skill assessment based on auto-
mated video-analysis motion studies,” in 2012 4th IEEE RAS EMBS International
Conference on Biomedical Robotics and Biomechatronics (BioRob), 2012, pp. 25–
31.

[118] C. Lea, G. D. Hager, and R. Vidal, “An Improved Model for Segmentation
and Recognition of Fine-Grained Activities with Application to Surgical Training
Tasks,” in 2015 IEEE Winter Conference on Applications of Computer Vision, 2015,
pp. 1123–1129.

120



[119] “Automated skill assessment for individualized training in robotic surgery-
Science of Learning,” http://scienceoflearning.jhu.edu/research/automated-skill-
assessment-for-individualized-training-in-robotic-surgery, access date: 2023.10.27.

[120] A. Malpani, S. S. Vedula, C. C. G. Chen, and G. D. Hager, “A study of crowd-
sourced segment-level surgical skill assessment using pairwise rankings,” Int J
CARS, vol. 10, no. 9, pp. 1435–1447, 2015.

[121] S. Krishnan, A. Garg, S. Patil, C. Lea, G. D. Hager, P. Abbeel, and K. Goldberg,
“Unsupervised Surgical Task Segmentation with Milestone Learning,” in Proc. Intl
Symp. on Robotics Research (ISRR), 2015, pp. 1–16.

[122] C. Lea, A. Reiter, R. Vidal, and G. D. Hager, “Segmental Spatiotemporal CNNs
for Fine-Grained Action Segmentation,” in Computer Vision – ECCV 2016, ser.
Lecture Notes in Computer Science, B. Leibe, J. Matas, N. Sebe, and M. Welling,
Eds. Springer International Publishing, 2016, pp. 36–52.

[123] R. DiPietro, C. Lea, A. Malpani, N. Ahmidi, S. S. Vedula, G. I. Lee, M. R. Lee, and
G. D. Hager, “Recognizing Surgical Activities with Recurrent Neural Networks,”
in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016,
ser. Lecture Notes in Computer Science, S. Ourselin, L. Joskowicz, M. R. Sabuncu,
G. Unal, and W. Wells, Eds. Springer International Publishing, 2016, pp. 551–558.

[124] S. S. Vedula, A. O. Malpani, L. Tao, G. Chen, Y. Gao, P. Poddar, N. Ahmidi, C. Pax-
ton, R. Vidal, S. Khudanpur, G. D. Hager, and C. C. G. Chen, “Analysis of the
Structure of Surgical Activity for a Suturing and Knot-Tying Task,” PLoS ONE,
vol. 11, no. 3, p. e0149174, 2016.

[125] A. Zia, C. Zhang, X. Xiong, and A. M. Jarc, “Temporal clustering of surgical activ-
ities in robot-assisted surgery,” Int J Comput Assist Radiol Surg, vol. 12, no. 7, pp.
1171–1178, 2017.

[126] L. Zhou and M. Kaess, “An Efficient and Accurate Algorithm for the Perspecitve-n-
Point Problem,” in 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Nov. 2019, pp. 6245–6252.

[127] E. Colleoni, P. Edwards, and D. Stoyanov, “Synthetic and real inputs for tool seg-
mentation in robotic surgery,” in International Conference on Medical Image Com-
puting and Computer-Assisted Intervention. Springer, 2020, pp. 700–710.

[128] M. J. Fard, S. Ameri, R. Darin Ellis, R. B. Chinnam, A. K. Pandya, and M. D. Klein,
“Automated robot-assisted surgical skill evaluation: Predictive analytics approach,”
Int J Med Robot, vol. 14, no. 1, 2018.

[129] Y. Beck, T. Herman, M. Brozgol, N. Giladi, A. Mirelman, and J. M. Hausdorff,
“SPARC: a new approach to quantifying gait smoothness in patients with parkin-
son’s disease,” Journal of neuroengineering and rehabilitation, vol. 15, no. 1, pp.
1–9, 2018.

[130] S. Singh, J. Bible, Z. Liu, Z. Zhang, and R. Singapogu, “Motion Smoothness Met-
rics for Cannulation Skill Assessment: What Factors Matter?” Frontiers in Robotics
and AI, vol. 8, 2021.

121



[131] D. Liu, Q. Li, T. Jiang, Y. Wang, R. Miao, F. Shan, and Z. Li, “Towards Unified Sur-
gical Skill Assessment,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 9522–9531.
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