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Abstract

High-grade serous ovarian cancer is the most lethal gynaecological malignancy. Detailed molecular studies have
revealed marked intra-patient heterogeneity at the tumour microenvironment level, likely contributing to poor
prognosis. Despite large quantities of clinical, molecular and imaging data on ovarian cancer being accumulated
worldwide and the rise of high-throughput computing, data frequently remain siloed and are thus inaccessible

for integrated analyses. Only a minority of studies on ovarian cancer have set out to harness artificial intelligence
(Al) for the integration of multiomics data and for developing powerful algorithms that capture the characteristics
of ovarian cancer at multiple scales and levels. Clinical data, serum markers, and imaging data were most frequently
used, followed by genomics and transcriptomics. The current literature proves that integrative multiomics approaches
outperform models based on single data types and indicates that imaging can be used for the longitudinal tracking
of tumour heterogeneity in space and potentially over time. This review presents an overview of studies that inte-
grated two or more data types to develop Al-based classifiers or prediction models.

Relevance statement Integrative multiomics models for ovarian cancer outperform models using single data types
for classification, prognostication, and predictive tasks.

Key points

- This review presents studies using multiomics and artificial intelligence in ovarian cancer.

- Current literature proves that integrative multiomics outperform models using single data types.
« Around 60% of studies used a combination of imaging with clinical data.

« The combination of genomics and transcriptomics with imaging data was infrequently used.
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Graphical Abstract

« This review presents an overview of studies that
integrated two or more data types to develop Al-
based classifiers or prediction models for ovarian
cancer.

S

* Integrative multiomics outperform models using

single data types.

¢ Around 60% of multiomics studies on ovarian

cancer used a combination of imaging with clinical

data.

Background

High-grade serous ovarian cancer (HGSOC) is the most
common type of ovarian cancer and the most lethal
gynaecologic malignancy, with 4.32 per 100,000 women
predicted to die from ovarian cancer in the European
Union in 2022 [1]. The disease typically presents at an
advanced stage with ascites and extra ovarian spread
(i.e., peritoneal carcinomatosis) with multiple implants
within the abdomen. Up-front treatment options com-
prise primary debulking surgery followed by platinum-
based chemotherapy or neoadjuvant chemotherapy
(NACT) with subsequent interval debulking surgery
depending on disease extent and locations. Beyond
chemotherapy, poly (ADP-ribose)polymerase and/or
vascular endothelial growth factor inhibitors are used
to treat ovarian cancer. Patient stratification and selec-
tion for the different clinical pathways are not entirely
standardised across centres but also strongly depend
on surgical expertise, training and facilities. Despite
maximal surgical effort and molecular-driven main-
tenance therapy, many patients with ovarian cancer
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Integrative multiomics models for ovarian cancer outperform models using single data types
for classification, prognostication and predictive tasks.
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recur and eventually develop chemotherapy-resistant
disease. Poor prognosis is underpinned by the loss of
DNA repair mechanisms, resulting in high genomic
intra-tumoural heterogeneity, early clonal evolution
and rapid onset of chemoresistance [2, 3].

Currently, the evaluation of disease extent and
response assessment in patients with HGSOC are based
on the subjective analysis of cross-sectional imaging, i.e.,
computed tomography (CT) and/or magnetic resonance
imaging (MRI). CT of the abdomen, pelvis, and often
also the chest is a key component in the multidiscipli-
nary discussion leading up to a recommendation of either
NACT and interval debulking surgery or primary debulk-
ing surgery. CT-based criteria suggesting low chances of
optimal cytoreduction and therefore favouring NACT
over primary debulking surgery are bulky or multifocal
disease along the large or small bowel and the mesentery,
bulky disease at the porta hepatis, along the liver surface
including the gallbladder fossa, and nonresectable dia-
phragmatic or thoracic disease [4]. However, these crite-
ria are subjective and not homogeneously applied across
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centres. Response evaluation criteria in solid tumors
(RECIST) 1.1 is the mainstay of response assessment
on CT scans of patients undergoing NACT [5]. Despite
efforts to develop objective response criteria such as
RECIST 1.1, interobserver variability, and subjective
selection of target lesions remain major challenges that
may affect response classifications and frequently require
centralised image interpretation for drug registration
trials [6]. There is an urgent need to obtain more robust
imaging biomarkers for a better understanding of the ini-
tial presentation and successive monitoring of HGSOC
during treatment that can be used to more effectively tai-
lor therapy and ultimately improve outcomes. Radiomics
has emerged as a tool for large-scale quantitative feature
extraction from standard diagnostic imaging and holds
great potential for developing image-derived biomarkers
[7]. Recent advances in computational power have facili-
tated the use of deep learning (DL) and convolutional
neural networks to automate image analysis further for
tasks such as lesion classification, prognostication and
response prediction.

To date, the genomic heterogeneity that character-
ises ovarian cancer, and HGSOC in particular, can
only be captured spatially by sampling multiple instead
of single disease sites and temporally by sampling
the tumour at different time points during treatment
which is hardly acceptable by patients. However, stud-
ies that harness artificial intelligence (AI) for integrat-
ing molecular omics with quantitative and standardised
image analysis hold the potential for unravelling imag-
ing signs of molecular heterogeneity that can then be
used for the development of improved predictive and
prognostic biomarkers. Cancer cells suffer deregula-
tions at multiple levels including deoxyribonucleic acid
(DNA), ribonucleic acid (RNA), proteins and metabo-
lites; therefore, integrated multiomics data analysis is
essential to fully understand the complexity of cancer
and to capture features relevant to prognostication and
prediction making. Although it has been shown that
these approaches yield higher predictive performance
when compared to studies focusing on single omics [8],
only a minority of studies use imaging and radiomics
integrated into a wider multiomics approach. With this
review, we set out to provide an overview of research
that has taken on the challenge of integrating at least
two data types into Al-based prediction or classifica-
tion models for ovarian cancer.

Search strategy and eligibility criteria

Between October 2022 and January 2023, PubMed/MED-
LINE, IEEE Xplore Digital Library, and Google Scholar
were searched for studies that developed an Al algorithm
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for classification or prediction-making in ovarian can-
cer patients using multiple data types including radio-
logical imaging. A controlled vocabulary supplemented
with keywords such as radiomics, Al, imaging, multiom-
ics, and data integration for ovarian cancer was used for
the search. We limited the results to journal articles and
conference proceedings. Conference abstracts, editorials,
and letters to the editor were excluded from our search.
Only English-language articles were considered.

Al: machine learning and deep learning

Al is a field of computer science where computers mimic
human intelligence and attempt to perform certain tasks
that normally require human cognition, such as problem-
solving and decision-making [9]. The two main fields of
Al machine learning (ML) and deep learning (DL), have
shown higher performance than traditional approaches
in the molecular characterisation of cancer, prognosti-
cation, diagnosis, patient classification, and prediction-
making in various cancer types, including ovarian cancer
[10, 11].

In the traditional paradigm of programming, Al tools
use manually created programs that use given input
data to produce the desired output. ML uses algorithms
to automatically and iteratively learn from those data to
perform a certain task, thus giving computers the abil-
ity to learn without being explicitly programmed. DL is
a subset of ML, inspired by human artificial neural net-
works, which tries to mimic the learning process of the
human brain. In ML, feature extraction (the process of
transforming raw data set into relevant features) is han-
dled manually, while the feature extraction process is
fully automated in DL.

Of the 34 studies reviewed, 88% used ML, whereas
only four studies used DL alone [8, 12—14] and two stud-
ies [15, 16] combined ML with DL techniques (Table 2).
Three of the four studies that used only DL [8, 13, 14]
combined genomics, epigenomics and transcriptom-
ics. So far, only ML techniques have been proposed for
predicting complete surgical cytoreduction and residual
disease [17-19] while both ML and DL methods have
been used for other general predictive and diagnostic
goals/applications such as prediction of survival, recur-
rence, response to neoadjuvant chemotherapy, and dif-
ferentiation between malignant and benign cancers and
various cancer subtypes.

Al and radiomics

Among the most frequently used ML algorithms for
classification tasks in ovarian cancer are support vec-
tor machines, multilayer perceptron networks, deci-
sion tree, random forests, extreme gradient boosting
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(XGBoost), and logistic regression. These techniques
make processing numerical features (such as clinical
and demographic data or blood test results) relatively
straightforward. However, medical images are multi-
dimensional data and must be converted into numeri-
cal features to be used as input to such ML algorithms.
Radiomics is a method for the computerised extraction
of quantitative imaging features that allow the use of
imaging data for machine learning; radiomics features
are numerical descriptors of the shape, intensity, and
texture of a structure such as a tumour on imaging
[20]. Encoding the information captured on multidi-
mensional images into radiomics feature vectors allows
information from radiological data to be combined with
other modalities (clinical data, genomics, etc.). Many
radiomics features are highly correlated, therefore, fea-
ture selection methods are crucial as they improve the
performance of the ML model, select the most relevant
features and eliminate irrelevant and redundant fea-
tures thus reducing the computational cost of model-
ling. Of all studies, 82% reviewed use feature selection
as part of their models (Table 2).

One of the bottlenecks of many radiomics studies is
the fact that radiomics feature extraction requires man-
ual segmentation of the regions of interest, which is
time-consuming and suffers from inter-observer vari-
ability. Differently, DL algorithms attempt to identify
complex associations of original features using com-
binations of different deep neural layers and generate
new features that can improve the performance of a
particular classification task compared to the origi-
nal features [14]. Convolutional neural networks are a
common DL method and a type of network that is par-
ticularly appropriate for computer vision and image
analysis for purposes such as image classification and
automated feature extraction [21]. It is important to
note that DL approaches require larger medical data-
sets compared to standard handcrafted radiomics and
ML methods to efficiently fit the training model and
produce the desired results.

Integration of different data types
The most frequently used data in the reviewed ovar-
ian cancer studies are clinical and demographic data.
These data, even if not universally considered as proper
“omics data”, are widely available, easy to collect, and
not expensive and could be integrated into clinical care
more easily than predictive models based on far more
expensive DNA or RNA sequencing, DNA methylation,
or proteomic data.

Interestingly, 50% of the studies reviewed here bene-
fitted from high-throughput information from radiomic
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data, mainly obtained from CT (27%) followed by MRI
(21%) and less frequently from ultrasound (US) (3%)
(Table 1). All of these studies combined radiomic sig-
natures with clinical data, and most of them also with
serum biomarkers, whereas only very few took into
account genomics [22—24] or histopathology [16, 25].

In almost all studies reviewed, combining multiple
data types improved the overall predictive performance
compared with a single data type, with the only excep-
tion of Wang et al. [12], whose DL model based on CT
data alone achieved higher prognostic performance in
validation cohorts, in terms of accuracy and area under
the curve (AUC) when compared to the combined
model (clinical information and DL features). This
result confirms the importance of integrating multiple
data types to enrich the data space used by Al tech-
niques (Fig. 1).

We found seven studies [17, 18, 26—31] that combined
clinical characteristics and serum biomarkers for differ-
ent research tasks (Tables 1 and 2). These studies used
a variety of clinical features, including age, year of diag-
nosis and surgery, performance status, histological type,
tumour grade and stage, timing of surgery, presence of
ascites, site of bulky disease at surgery, size of the larg-
est tumour deposit, tumour location, tumour diameter,
outcome of surgery, and residual tumour size after ini-
tial surgery. In addition, various serum biomarkers such
as cancer antigen 125 (CA-125), cancer antigen 153,
alphafetoprotein, carcinoembryonic antigen, and carbo-
hydrate antigen 19-9 were investigated. In these seven
studies, different ML algorithms were used for various
objectives, including differentiation between benign and
malignant tumours [26, 27, 30], prediction of complete
surgical cytoreduction, survival [17, 18], determination
of clinical stage, histotype, residual tumour burden, his-
topathological cancer type [28, 30], and prediction of
critical care unit admission [29]. In three reports [26, 27,
30], the logistic regression, multilayer perceptron, and
XGBoost algorithms were able to achieve an accuracy of
0.97, 0.98, and 0.96, respectively. In two reports [27, 30],
no feature selection method was used. Two studies [17,
18] reported an accuracy of up to 0.87 and 0.73, respec-
tively, for predicting complete surgical cytoreduction
using XGBoost and artificial neural network algorithms.
In two studies [28, 30], higher accuracy was obtained in
distinguishing benign from malignant lesions (0.97 and
0.96, respectively) compared with clinical stage determi-
nation (0.76 and 0.68, respectively). Except for one study
[27], all studies used data sets of more than 290 patients.

Imaging and other omics
To date, twenty studies have combined imaging data
with other data types [12, 15, 16, 19, 22-25, 31-42]
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Fig. 1 Multiomics studies in ovarian cancer to date use (circles from left to right) clinical data, serum biomarkers like cancer antigen 125 (CA-125),
imaging including computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US), genomics, epigenomics, transcriptomics,
proteomics, and pathology data for the development of artificial intelligence-based cancer subtyping, lesion classifiers, and models for predicting
patient outcome including response to chemotherapy, complete surgical cytoreduction, and survival (bottom panel)

(Tables 1 and 2). Fifteen of these studies combined
imaging data with clinical features and serum biomark-
ers [12, 15, 19, 31-36, 38—-42]; two studies combined
imaging data with clinical data and transcriptomics
(gene expression; RNA) [22, 23]; two studies combined
imaging data with clinical data, serum biomarkers, and
histopathology data [16, 25]; and two studies combined

imaging data with clinical data, serum biomarkers, and
genomics (DNA and circulating tumour DNA) [24, 37].
CT [12, 15, 16, 22-24, 34-36] and MRI [19, 25, 38—42]
were the most commonly used imaging modalities,
while US and positron emission tomography (PET)/
CT were used in only three studies [31-33]. Radiom-
ics was used in all studies with imaging data, except for
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three studies that used either colour Doppler US and
morphologic descriptors [31] and semantic CT features
[34] or extracted DL features from images [12].

All studies used ML algorithms, except for one that
used only DL algorithms [12]. Two studies used both
ML and DL models on image data [15, 16].

The targets of the reviewed studies combining imag-
ing data and other omics were distinguishing between
benign, malignant, and borderline tumours [31, 32, 41,
42]; prediction of survival [22, 33, 34, 36]; prediction of
recurrence and platinum resistance [12, 15, 22, 24, 25, 35,
39]; prediction of response to neoadjuvant chemotherapy
[16, 37]; prediction of hypoxia [23]; prediction of peri-
toneal metastases [38, 40]; and prediction of complete
surgical cytoreduction [19]. Integration of clinical vari-
ables with radiomics improved the performance of BRCA
mutation prediction and achieved an AUC of 0.74 com-
pared to only 0.62 on training data and 0.59 on test data
for models based on radiomics alone [15]. The highest
AUC (0.81) was also reported using a radiomics-clinical
nomogram in [25] compared with radiomics or a clini-
cal model alone. In [32], the AUC for US-based radiom-
ics model combined with clinical features reached 0.91,
compared to 0.88 for the radiomics model alone. The
best performance (C-index 0.70, 95% confidence inter-
val 0.66—0.74) was achieved by integrating clinical and
PET radiomics features in [33] compared to using radi-
omics or clinical features alone. A higher AUC metric
was also reported in [36] using a combined model (0.77)
compared to using only radiomics (0.72) or clinical data
(0.69). In [38], authors reported a higher performance
using a radiomic-pelvic fluid-CA-125 model (AUC 0.94)
compared with a model using radiomics alone (AUC
0.92). A higher AUC was also achieved using a combined
model (0.78) compared to the clinical model (0.67) and
multiradiomics model (0.74) [39]. A study [40] combined
model based on radiomics and clinicopathological risk
factors lead to an absolute increase of 5% in AUC com-
pared with clinical data or radiomics only. A combined
model based on radiomics and clinical features achieved
an absolute increase in AUC of 10% and 15%, respec-
tively, when compared to a clinical and radiomics model
alone [41]. In addition, combining radiomics signatures
with other types of data has also shown promise, e.g., a
radiomics-histopathological model [16], a radiomics-
clinical-genomic model [22], a radiogenomic model [23],
a radiomics-clinicopathological-genomic model [24], and
a radiomics-clinical-radiological characteristics model
[42] showed higher performance compared to using radi-
omics, clinical, genomic, and histological models alone
(details of model performance can be found in Table 2).
However, there is still scope for optimising the different
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building blocks of radiomics pipelines to improve the
AUC also of integrative multiomics predictors.

Genomics, epigenomics, transcriptomics, and other omics
We found seven more studies that integrated genomics
and epigenomics (DNA and DNA methylation), tran-
scriptomics (gene expression, RNA, and other omics data
[8, 13, 14, 43—-46] (Tables 1 and 2). Three studies com-
bined genomics, epigenomics and transcriptomics for
benign versus malignant differentiation [8], survival pre-
diction [13], and subtyping [14]. Two studies combined
genomics, epigenomics, and transcriptomics with clinical
data to predict survival [43] and to predict response to
neoadjuvant chemotherapy [45]. In addition, one study
combined transcriptomics with clinical data to predict
response to neoadjuvant chemotherapy [44]. In another
study [46], the authors combined genomics, transcrip-
tomics, pathology, and proteomics data to predict sur-
vival in ovarian cancer.

Of these seven studies, four [43-46] used ML and
three [8, 13, 14] used DL. In [8], the authors reported
that a combination of copy number variation, mRNA,
and methylation data (AUC 0.96) outperformed using
copy number variation (AUC 0.54), mRNA (AUC 0.94),
and methylation (AUC 0.75) data alone. A multiom-
ics model also achieved a higher performance (C-Index
0.571+0.036, mean+standard deviation) compared to
models using single omics in [13]. In [44], an integrated
model based on clinical information and gene expres-
sion data increased the accuracy by more than 19% and
45% compared to a model using only gene expression
data on two different datasets. An AUC over 0.95 was
achieved by integrating clinical and genomic variables
[45]. Some authors [46] achieved the best accuracy using
a multiomics model combining histopathological image
features and genomics (AUC 0.91) compared with the
model using only histopathological image features (AUC
0.70). In addition, an integrated multiomics model based
on DNA methylation, copy number alteration, and RNA
achieved a higher AUC (0.70) than when using meth-
ylation data (AUC 0.53), copy number alteration (AUC
0.64), and RNA data alone (AUC 0.66).

Al and multiomics-based heterogeneity analysis

Genomic studies of multiple samples from single patients
have allowed detailed intra-patient inter-site heteroge-
neity studies and revealed the diverse patterns of clonal
spread of HGSOC which are thought to shape the local
tumour immune-microenvironment, to affect sensitivity
to treatment and, therefore, to be prognostically relevant
[2,47, 48]. CT of the abdomen and pelvis is central to the
clinical pathway in patients with HGSOC and provides a
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snapshot of the multisite disease burden in patients with
advanced disease.

Radiomics allows to non-invasively quantify this
inter-site heterogeneity and the integration of radiom-
ics with molecular omics provides a unique opportunity
for decoding the link between heterogeneity on imaging
and at the molecular and cellular level [49]. Vargas et al.
[50] developed CT-radiomics-based spatial heterogeneity
metrics across multiple metastatic lesions and integrated
these imaging-based heterogeneity metrics with clinical
variables and genomics to predict survival and platinum
resistance [22]. Of note, this integrated multiomics pre-
dictor outperformed other models based on fewer data
types and also a multiomic model that included radiom-
ics but did not take into account inter-site intra-patient
heterogeneity. Besides radiomics, also multiparametric
MRI and *8F-fluoro-deoxy-glucose-PET have been shown
to hold great potential for an improved understanding
of inter-site heterogeneity as clusters based on imaging-
derived diffusivity, vascularity and metabolic parameters
were associated with patterns of hypoxia on immunihis-
tochemistry and distinct genetic alterations [51].

Discussion

Over the past two decades, fast and affordable sequencing
has revolutionised genomic, epigenomic, and transcrip-
tomic research, introducing unprecedented innovations
in all the disciplines of cancer care ranging from gynae-
cological oncology to radiation therapy. Improvements
in computational power have similarly changed the land-
scape of imaging research with exponentially increasing
publications on radiomics and Al [7, 52]. The literature
reviewed here demonstrates the vast potential multiom-
ics data integration holds for improving patient care and
outcome. Integration of radiomics and clinical informa-
tion consistently outperformed models using radiomics
or clinical models alone [15, 19, 25, 32, 33, 35, 36, 38—41].
In addition, the integration of radiomics with other types
of data such as histopathological, genomic, and clinico-
pathological data [16, 22-24] improved performance,
illustrating the added value of combining radiomics fea-
tures in the developed models. Furthermore, in studies
that integrated genomics and epigenomics, transcrip-
tomics, and other omics data [8, 13, 14, 43—46], integra-
tion of multiomics data improved the results compared
to single omics and an AUC of up to 0.95 was achieved
for the test data sets [45].

Although genomic features such as homologous
recombination deficiency have shown significant ther-
apeutic implications in ovarian cancer, their assess-
ment is not yet integrated into clinical practice and can
be challenging and expensive and is still not refund-
able in many countries. To date, no imaging-based
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classifiers or predictors of outcome are currently being
used routinely in clinics. Their implementation could
be facilitated with easily usable, economically sustain-
able and effective methods. They hold the promise of
overcoming many of the above-mentioned issues but
limitations in the design and execution of some of the
literature on radiomics and Al are at least partially
contributing to the current situation. The lack of inde-
pendent external datasets to evaluate AI models in a
large part of the studies reviewed here is representa-
tive of a shortcoming of many radiomics studies. The
use of independent data sets ideally from different
institutions with different patient demographics, and
socioeconomics and with imaging studies acquired
using different scanners and vendors is highly recom-
mended to overcome this limitation. Secure sharing of
pseudonymised or anonymised data sets as well as Al
models between research institutions, for example in a
federated setup, is one way of ensuring the publication
and distribution of highly generalisable models and
could increase the chances of timely integration into
clinical workflows, thanks to the robust replicability of
these experiments.

The majority of studies also lacks detailed descriptions
of the software and source code to enable the independ-
ent reproduction of results, an issue also encountered in
other areas of oncological imaging and AI [53]. In addi-
tion, a variety of different metrics are used in Al research
to evaluate and indicate diagnostic and predictive power,
for example, metrics such as accuracy, AUC, sensitivity,
specificity, F-score, C-index, recall, and dice similarity
coefficient, limiting the comparative interpretability of
the existing studies (Table 2). The use of common and
standardised metrics would facilitate quantitative com-
parisons of models across different cohorts and institu-
tions, significantly increasing the clinical impact of these
decision-support tools.

The use of sufficient and common metrics should also be
considered in future Al research. The overwhelming major-
ity of studies reviewed here showed a benefit of multiom-
ics data integration over limiting classification or prediction
model building to one data type only. Therefore, the future
work in this field should focus on data integration.

The association of genomic intrapatient heterogeneity
in ovarian cancer and prognosis has been established and
imaging is a well-suited tool for non-invasively assess-
ing heterogeneity between tumour sites and tracking
it over time. However, the integration of heterogeneity
studies including multiomics is only in its infancy but
has already shown advantages over less comprehensive
analyses in terms of predictive power [22]. Besides the
well-established whole genome sequencing of tumour
DNA, more innovative approaches like the assessment of
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circulating tumour DNA and proteomics are more rarely
encountered but merit attention [37, 54]. CA-125 has a
well-established role in the diagnosis and management of
ovarian cancer but lacks both sensitivity and specificity
and circulating tumour DNA holds the potential to over-
come this limitation [55]. Radiomics-based habitats have
been used for targeting tissue sampling under ultrasound
guidance, a technique that holds the potential to allow
the integration of molecular tissue studies and radiomics
with the advantage of limiting the exposure of the patient
to ionising radiation and improving the design of clinical
trials and their end-points [56, 57].

Conclusions

Al tools for integrating multiomics data for tasks such
as adnexal lesion classification and outcome predic-
tion in ovarian cancer were reviewed in this review. The
current literature proves that Al-based tools based on
multiomics data integration are more than the sum of
their parts and clearly outperform single-omic data sets.
Clinical data, serum markers and imaging data (pre-
dominantly using handcrafted radiomics) were the data
most frequently paired up, followed by genomics and
transcriptomics.

The latter two were only infrequently combined with
imaging data, highlighting a current gap in the avail-
able literature. Only rarely the AI methods have been
described in enough detail that would allow the repro-
duction of the results. Also, sharing data and analysis
algorithms is uncommon thus hampering independ-
ent validation of results, a prerequisite for Al tools to
be considered for clinical use. Heterogeneity at the
genomic and tumour-microenvironment level repre-
sents a hallmark of ovarian cancer, likely contributing
to its poor prognosis. Pivotal studies have shown that
imaging holds the key to describe and understand het-
erogeneity, not only at the spatial but also temporal
level with multiple scans being routinely performed
throughout our patients’ path of care, allowing the
setup of innovative therapeutic solutions and poten-
tially improving treatment outcomes.
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