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Abstract. Krylov subspace methods are a powerful family of iterative solvers for

linear systems of equations, which are commonly used for inverse problems due to

their intrinsic regularization properties. Moreover, these methods are naturally suited

to solve large-scale problems, as they only require matrix-vector products with the

system matrix (and its adjoint) to compute approximate solutions, and they display

a very fast convergence. Even if this class of methods has been widely researched and

studied in the numerical linear algebra community, its use in applied medical physics

and applied engineering is still very limited. e.g. in realistic large-scale Computed

Tomography (CT) problems, and more specifically in Cone Beam CT (CBCT). This

work attempts to breach this gap by providing a general framework for the most

relevant Krylov subspace methods applied to 3D CT problems, including the most

well-known Krylov solvers for non-square systems (CGLS, LSQR, LSMR), possibly

in combination with Tikhonov regularization, and methods that incorporate total

variation (TV) regularization. This is provided within an open source framework: the

Tomographic Iterative GPU-based Reconstruction (TIGRE) toolbox, with the idea of

promoting accessibility and reproducibility of the results for the algorithms presented.

Finally, numerical results in synthetic and real-world 3D CT applications (medical

CBCT and µ-CT datasets) are provided to showcase and compare the different Krylov

subspace methods presented in the paper, as well as their suitability for different kinds

of problems.
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On Krylov Methods for Large-Scale CBCT Reconstruction 2

1. Introduction

Computed Tomography (CT) is a very popular imaging technique widely used

in medical and scientific applications. In particular, Cone Beam CT (CBCT) has

gained significant attention in the last decade, both for medicine, when low dose image

guidance is required (e.g. dental imaging, image guided radiation therapy, image guided

surgery), but also in scientific applications involving µ-CT, where higher doses are

tolerated in favour of a better image reconstruction quality. Moreover, since many

clinical applications require producing reliable images in real or near real time [1][2],

there is a true need for faster available reconstruction methods. This is crucial in

CBCT imaging during surgical procedures, where the long time required by most

standard algorithms makes their use unfeasible in a standard clinical workflow. For

example, this is the case in needle-based procedures, where fast CBCT imaging has the

potential to accurately image intraoperative anatomy in close proximity to the needle

[3][4] allowing for immediate adjustment in case of misplacement. Other examples can be

found in image guided radiotherapy and online radiotherapy, and particularly in particle

radiotherapy, where a CBCT image is taken on-site mere seconds before the radiation

dose is delivered [5], with a very limited window for both reconstruction and radiation

dose planning. Finally, optimization of source-detector CBCT trajectories has recently

shown great promise in interventional radiology, offering a variety of benefits, including

image quality improvement, FOV expansion, radiation dose reduction, metal artifact

reduction, and 3D imaging under kinematic constraints. This optimization process is

highly dependent on the image reconstruction speed, so the clinical implementation of

such methods can only be realized with the use of fast CBCT reconstruction techniques

[6][7].

In order to perform the CT reconstructions of an image from its measured x-ray

projections, one needs to study and understand the properties its underlying numerical

model. Mathematically, this can be formulated as finding a solution of a large-scale

linear system of the form

Ax+ e = b, (1)

where A ∈ RN×M is the system matrix describing the measurement process, b ∈ RN is

the vector of measurements and e ∈ RN is the modelled additive noise. Note that N

is the number of detector pixels multiplied by the number of projection angles, while

M is the number of voxels in the image x. For more information see, e.g., [8][9] and

references therein. There are two main factors that make problem (1) very challenging

to solve in practice. First, the problem is ill-posed, i.e. the matrix A has singular values

that decay and cluster at zero, without an evident gap between two consecutive values.

This means that the recovered solution is very sensitive with respect to small pertur-

bations (e.g. noise) in the measurements, and therefore some regularization (replacing

the original problem by a related more stable problem), needs to be applied to obtain

a meaningful reconstruction. In the context of CT, the ill-posedness of the problem

is related to A being a fine enough discretization of an integral operator (linear and
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On Krylov Methods for Large-Scale CBCT Reconstruction 3

compact) [10], and it is accentuated when the data set is limited e.g., when only limited

angle or sparse full-angle tomography measurements are available [11, Chapter 9]. The

methods described in this paper provide different forms of regularization that will be

explained and compared in the following sections. Second, in real-world CT applica-

tions, equation (1) can be very large-scale, so it is unfeasible to work directly with the

matrix A or, in most cases, even construct it and store it.

In practical CT applications, an approximation of the solution of (1) is frequently

computed using a direct method commonly known as Filtered Backprojection (FBP),

or as FDK in CBCT problems, and named after Feldkamp, Davis and Kress [12]. This

produces good results for mildly ill-posed problem, e.g. for high doses and independent

projections. However, these algorithms can produce heavy image artifacts due to noise

amplification related to the ill-posedness of the problem and mismatches between the

idealistic models for the x-ray behaviour and the real measurement sampling process,

see, e.g. [11]. An alternative to solve problem (1) is to use iterative methods that

rely only on matrix-vector products with A and AT to handle the large-scale nature of

these matrices; hence these are also known as matrix-free methods. For mildly ill-posed

problems one can expect the outcome of most used inversion algorithms to be similar

[11, Chapter 9]. However, iterative methods have shown to produce reconstructions of

better quality [13][14][15], particularly in the cases where there are less measurements,

or they are noisier. This is especially relevant in medical applications, where reduced

measurements lower the amount of damaging x-ray radiation that is given to the pa-

tient. Consequently, iterative methods are of practical relevance in clinical applications:

progressively more commercial CT scanners come with iterative reconstructions due to

their robust and improved image quality. Moreover, while in µ-CT the radiation dose is

not harmful for the imaged object, there are cases where a sparse or low dose sampling is

still required. For example, for non destructive testing of manufacturing processes, the

throughput of the scanning should align with the throughput of the production, so the

measuring speed limits the amount of data that can be acquired [16]. However, one needs

to mention that iterative methods are slow compared to FDK: this is because FDK is

computed by a ramp filter and a back-projection; whereas all existing iterative method

compute, at least, one forward projection and one back-projection per iteration, and

therefore each iteration requires almost the same computation time than FDK. For this

reason, it is critical to make fast iterative reconstruction algorithms available for CBCT.

This work focuses on Krylov subspace methods, a family of matrix-free algorithms

that are very well-known and studied in the numerical linear algebra community but

that have found limited use on real-world CT applications so far. This class of methods

was first introduced in the 1950s [17], but it is recently getting very popular for solving

inverse inverse problems [18][19]. Conjugate Gradient Least Squares (CGLS) is the most

commonly used Krylov method in applied x-ray CBCT, see, for example [20][21][22].

Moreover, it is sometimes also found in combination with Tikhonov regularization, or
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On Krylov Methods for Large-Scale CBCT Reconstruction 4

within more complex minimization schemes tackling different variational regularizers

[23]. Mathematically equivalent to CGLS, the more stable algorithm LSQR, has also

been used for CBCT [24][25], but is by far less popular than CGLS. Other minimal

residual Krylov solvers, such as modifications of the generalized minimal residual

algorithm (GMRES), have been seldom used in CT [26]. In particular, we want to

include in our comparisons recent developments building up from this algorithm, namely

ABBA-GMRES [27][28], which support unmatched backprojectors: a very common

problem in large-scale CT. In this same work LSMR is also used as a comparison. Recent

developments in hybrid Krylov methods incorporating Tikhonov regularization and total

variation regularization have not been used in real-world CT applications to the best of

our knowledge. In terms of available (open source) software, some implementations of

the described algorithms can be found along with the papers where they were presented,

e.g. [27], or in the IR-tools toolbox [29], which provides many algorithm implementations

for large 2D problems. However, these implementations are not suitable for large-scale

(5123 or bigger) CBCT problems. For this particular application, some Krylov methods

have been implemented previously: the TIGRE [30], CIL [31] and ASTRA [32] toolboxes

provide CGLS implementations, and the authors in [33] provide an implementation of

CGLS and LSQR with limitations on image size when considering µ-CT scales.

The technical novelty of this paper is two-fold: 1) Applying state-of-the art Krylov

subspace methods in real CT applications, some of them for the first time, 2) Providing

the relevant codes within an open source framework: the Tomographic Iterative GPU-

based Reconstruction (TIGRE) toolbox [30], that can be seamlessly used in any GPU

supported device for arbitrarily large images as long as they can be stored and processed

in the available machines. Moreover, reproducible numerical experiments are provided

in synthetic and real-world 3D CT applications (for medical CBCT and µ-CT datasets)

that showcase and compare the different methods presented in the paper.

In the following sections the most relevant Krylov subspace methods for 3D CT

problems are described including the most well-known Krylov solvers for non-square

systems (CGLS, LSQR, LSMR), possibly in combination with Tikhonov regularization,

and recently developed methods that incorporate Total Variation (TV) regularization.

Note that Section 2 (Methods) recalls the mathematical framework for the methods

described in the paper. Reading this section is not necessary to use the algorithms as

provided in the toolbox, so the authors suggest to anyone interested only in the direct

applications of such methods to skip this section. Examples of results under different CT

acquisition modes and samples are given in Section 3 (Results), some general guidance

on the use of the different algorithms is provided in Section 4 (Discussion) and a list of

the algorithms in the toolbox is provided in Section 5 (Conclusions).

2. Methods

Krylov methods are projection methods, i.e. iterative methods that, at each

iteration k, are defined to find the best solution xk belonging to a Krylov subspace of
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On Krylov Methods for Large-Scale CBCT Reconstruction 5

increasing dimension according to different optimality criteria that define each particular

Krylov solver. In particular, Krylov subspaces are generated by the linear combination

of the first k-1 powers of a matrix acting on a vector. In this paper, we mainly focus on

subspaces where ATA acts on AT b, denoted as

Kk(A
TA,AT b) = span{AT b, (ATA)AT b, ..., (ATA)k−1AT b}, (2)

or in variations thereof. Unless explicitly stated otherwise, the computational cost of

the presented Krylov methods is dominated by a matrix vector product by A and AT

per iteration.

2.1. Least squares problems

Note first that (1) might not be consistent, i.e. there might not exist a solution

x∗ such that Ax∗ = b, mainly due to the presence of the noise e, but also due to

small differences between the discretized model and the true underlying physical model

governing the measurement process. Therefore, we consider instead the following least

squares problem

x̂ = argmin
x

∥Ax− b∥2. (3)

Note that solving (3) corresponds to finding the best linear unbiased estimator for

the solution assuming uncorrelated noise with equal variance and zero mean by the

Gauss–Markov theorem, see e.g. [34]. This is frequently taken as a reasonable

approximation to the noise due to its computational convenience, see e.g. [11, Chapter

2.3.2], when the noise is not ‘too big’, e.g. far from the low photon count limit. This is

the approach that will be used in the following of this paper. It is worth mentioning that,

alternatively, a more accurate quadratic approximation of the noise can be computed

starting from a Poisson distribution modeling the errors for the photon counts and using

a second-order Taylor expansion, see [10, Example 12.6]. This results in the variance

not being the same across pixels, and can be tackled with a weighted norm in (3) (or

equivalently left preconditioning in (1)). The Krylov methods in this paper can be easily

adapted to this case see, e.g. [35].

When A is ill-posed, problem (3) is very sensitive to small perturbation in the

measurements, so the solution of (3) might still be a bad reconstruction of the original

image. Krylov methods have inherent regularization properties when combined with

early stopping, displaying a phenomena called semiconvergence, i.e. the relative error

norm of the solution decreases on the first iterations but starts increasing again after the

optimal stopping iteration, see e.g. [9, Section 6.3]. In the following subsections the most

applicable Krylov methods to solve problem (3) in the context of CT reconstruction are

described.

2.1.1. CGLS Conjugate gradient least squares (CGLS), is the most used Krylov

method in CT, and it dates back to [17]. It consists on applying the conjugate gradient
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On Krylov Methods for Large-Scale CBCT Reconstruction 6

method to the normal equations associated to (3): ATAx = AT b. At each iteration k,

the solution of

xk = argmin
x∈Kk(ATA,AT b)

∥Ax− b∥2 (4)

is computed, such that the residual norm ∥rk∥, where rk = b − Axk, decreases

monotonically.

2.1.2. LSQR The LSQR method is based on the construction of a Krylov subspace

using the Golub–Kahan (GK) bidiagonalization process [36]. This process results on

a partial decomposition of A of the form AVk = Uk+1Hk, where Hk ∈ Rk+1×k is

bidiagonal, and such that the orthonormal columns of Vk span the Krylov subspace

Kk(A
TA,AT b), Uk+1 has orthogonal columns and Uk+1e1 = ∥b∥e1. Then, problem (4)

can be reformulated as

xk = Vkyk where yk = argmin
y∈Rk

∥b− AVky∥2 = argmin
y∈Rk

∥∥b∥e1 −Hky∥2, (5)

where e1 is the canonical vector of appropriate dimension. Even if this method has

been less used in applied CT papers compared to CGLS, these two methods are

mathematically equivalent, and LSQR was originally designed to provide a more stable

algorithm. A detailed implementation of this method based on short recursions can be

found in the original paper [36].

2.1.3. LSMR Similarly to LSQR, LSMR is also based on the construction of a Krylov

subspace using the Golub–Kahan (GK) bidiagonalization process [37]. However, at each

iteration, LSMR seeks a solution xk ∈ Kk(A
TA,AT b) such that ∥AT rk∥ is minimized,

i.e.

xk = Vkyk where yk = argmin
y∈Rk

∥AT rk∥2 = argmin
y∈Rk

∥∥AT b∥e1 − H̄T
k Hky∥2, (6)

where H̄k ∈ Rk×k corresponds to the first k rows of the matrix Hk. Although both

LSQR and LSMR converge in exact arithmetic to the same solution, see e.g. [37], they

produce slightly different solutions at each iteration. Moreover, LSMR is mathematically

equivalent to GMRES [38] applied to the normal equations ATAx = AT b, and since the

system matrix for the normal equations is symmetric, this is also equivalent to using

MINRES [39].

2.1.4. AB-GMRES and BA-GMRES Due to how efficient implementations of the

CBCT problems are coded for GPUs, the matrix B that represents the backprojection

operator, i.e. the adjoint of A, is usually just an approximation of AT [40]. This

mismatch can cause the standard Simultaneous Iterative Reconstruction Technique

(SIRT) family of iterative solvers to diverge, unless specific perturbations are added

to stabilize the convergence, see [27]. Alternatively, the approximated transpose matrix

B can be used as a right (resp. left) preconditioner for GMRES when solving problem

(3), giving rise to AB-GMRES (resp. BA-GMRES) [27].
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On Krylov Methods for Large-Scale CBCT Reconstruction 7

2.2. Tikhonov regularization

Another form of regularization is Tikhonov regularization, and it is perhaps

the simplest and most well-known variational regularization method. It consists on

computing the solution

x̂ = argmin
x

{
∥Ax− b∥22 + λ2∥x∥22

}
, (7)

where the regularization parameter λ balances the effect of the fit-to-data term ∥Ax−b∥22
(promoting consistency of the solution with the measurements) and the regularization

term ∥x∥22 (promoting regularity of the solution). If λ is chosen adequately, the

semiconvergence behaviour can most times be alleviated, and the algorithms are less

sensitive to early stopping; moreover, this allows for a bigger Krylov space to be built,

sometimes leading to solutions of improved quality with respect to their non-Tikhonov-

regularized counterparts. When λ is known, or fixed ahead of the iterations, one can

apply any iterative solver (e.g. CGLS, LSQR or LSMR) to the augmented system:

x̂ = argmin
x

∥∥∥∥∥
[

A

λI

]
x−

[
b

0

]∥∥∥∥∥
2

. (8)

For example, an LSMR implementation for fixed λ is given in the original paper [37]

and compared in this study. An alternative approach is to use hybrid methods: which

consist on adding Tikhonov regularization to the projected problem (5) or (6). In the

case of LSQR, this is mathematically equivalent to projecting the regularized problem

(8) [9, Chapter 6]. However, this is not the case for LSMR [41]. The big advantage

of hybrid methods is that they provide a framework to estimate λ on-the-fly when it

is not known a-priori. Even if they display a very fast convergence, the drawback of

these methods is that they come with the additional cost of having to store k additional

(basis) vectors for computing the solution at iteration k. This makes them suited for

small to medium problems, e.g. x ∈ R512×512×512, b ∈ R512×512×360. In some cases, this

could be alleviated by storing the coefficients and recomputing all the basis vectors at

the end of the iterations requiring twice as many matrix-vector products with A and AT

than their non-hybrid counterparts. We provide a version of hybrid LSQR to show the

performance of these methods. For more information, a great review on hybrid methods

can be found in [18].

2.2.1. hybrid LSQR Using the same Krylov subspace described for LSQR and adding

regularization to the projected problem (5), leads to solving, at each iteration k:

xk = Vkyk where yk = argmin
y

{
∥∥b∥ e1 −Hky∥22 + λ2

k∥y∥
2
2

}
. (9)

As already mentioned, and thanks to the shift invariance property of Krylov subspaces,

for fixed λk problem (9) is equivalent to projecting problem (8) onto the Krylov subspace

Kk(A
TA,AT b), see, originally [42], or [9] for a more detailed explanation. An interesting
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On Krylov Methods for Large-Scale CBCT Reconstruction 8

feature of formulation (9) is that λk can be computed on-the-fly at each iteration

k according to a parameter choice criterion; examples of which can be found in the

following section.

2.2.2. Parameter choice criteria A good choice of the regularization parameters is

crucial to obtain meaningful reconstructions when dealing with ill-posed problems. In

this section we focus on choices for λk (but note that the total amount of iterations k

can also be considered a regularization parameter for regularization by early-stopping).

In the following, we provide the description of two of the most simple and commonly

used regularization parameter choice criteria. This is by no means an exhaustive list of

the available options and we point the interested reader to the reviews in e.g. [18][19].

If a good estimate of the norm of the error ∥e∥ is available, a very popular and

reliable parameter choice criterion is the Discrepancy Principle (DP) [43]. This method

is based on the idea that

∥Axexact − b∥22 = ∥Axexact − bexact − e∥22 = ∥e∥22 =
∥e∥22
∥b∥22

∥b∥22 = nl2 ∥b∥22 (10)

so at each iteration, λk is chosen so that

λk = argmin
λ

{∥Axλ − b∥22 − nl2 ∥b∥22}. (11)

Alternatively, one can use parameter choice rules that do not use any information

about the noise e, also known as “heuristic methods”. In particular, we provide an

implementation of the Generalized Cross Validation (GCV) parameter choice criterion,

which relies on cross validation: a well known statistical tool used to predict possible

missing data values. In this case, each of the components of the vector of measurements

b is estimated using the rest of components, and the regularization parameter λk

associated with the best predicted values is taken at each iteration. In practice, for

hybrid LSQR, using GCV involves solving the following minimization:

λk = argmin
λ

∥∥∥(I −HkH
†
k,λ) ∥b∥e1

∥∥∥2

2

tr((I −HkH
†
k,λ))

2
where H†

k,λ = (HT
k Hk + λ2I)−1HT

k . (12)

Note that this can be generalized to other Krylov methods (e.g. LSMR) by replacing

the projected matrix and right hand side by corresponding ones (see, e.g. [41]).

2.3. Total Variation (TV) regularization

Total variation is a very common variational regularization scheme that promotes

piecewise-constant reconstructions by favouring solutions with a sparse gradient. This is

very popular in imaging problems as it contributes to preserve edges in the reconstructed

image. In this paper the discrete isotropic total variation in 3D is considered:

TV (x) =
∑
i

√
[Dlx]

2
i + [Djx]

2
i + [Dkx]

2
i =

∥∥∥∥√[Dlx]
2
i + [Djx]

2
i + [Dkx]

2
i

∥∥∥∥
1

, (13)
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On Krylov Methods for Large-Scale CBCT Reconstruction 9

where Dl, Dj, Dk refer to the finite difference approximations of the three directional

derivatives for the 3D image x. A popular approach to solve the TV problem using

Krylov methods is to re-write the TV regularization term using a weighted 2-norm:

x̂ = argmin
x

{
∥Ax− b∥22 + λ2TV (x)

}
= argmin

x

{
∥Ax− b∥22 + λ2∥W (Dx)Dx∥22

}
,

(14)

where D is the 3D discrete derivative operator and W (Dx) is a (diagonal) weighting

matrix that depends on Dx. Then, the functional in (14) can be approximated locally

by a sequence of quadratic functionals, giving rise to a sequence of problems of the form:

x(k) = argmin
x

{
∥Ax− b∥22 + λ2∥L(k)Dx∥22

}
, (15)

where L(k) are approximations of W (Dx) of improving quality. This scheme is called

iteratively reweighted norm (IRN) and was first used in combination with TV in [44]

for 2D imaging problems. In the following, two algorithms that (partially) solve the

problems in (15) to approximate TV regularization are described.

2.3.1. CGSL-TV The sequence of problems (15) can be solved in an inner-outer scheme

fashion where, at each outer iteration, the computed solution x(k) is used to update

the weights L(k+1) = W (Dx(k)). Following [44], an adaptation of this method for

3D using CGLS in the inner iterations, is provided in this paper. This scheme has

provable convergence guarantees, but requires λ to be known a-priori and can be very

computationally expensive due to its inner-outer scheme nature. Other variations of this

method have been implemented using other Krylov methods for the inner iterations, e.g.,

in combination with LSQR [45].

2.3.2. hybrid fLSQR An equivalent formulation to (15), dropping the (k) upper-script

to ease the notation so that L = L(k), is to solve

x̂ = L†
AȳL + x0, where ȳL = argmin

ȳ

{
∥AL†

Aȳ − b̄∥22 + λ2∥ȳ∥22
}
, (16)

where L†
A is the A-weighted pseudoinverse of L, defined as L†

A = [I− (A(I−L†L))†A]L†

(L† denotes the Moore-Penrose pseudoinverse of L); x0 is the component of the solution

x̂ in the null space of L(k) and b̄ = b − Ax0. The matrix L†
A can now be considered

as an (iteration dependent) right preconditioner and incorporated into the space of the

solutions using flexible Krylov methods, see, e.g. [46][47][48]. This strategy circumvents

the need for an inner-outer scheme, and provides a much faster convergence than TV

- CGSL. Moreover, in a hybrid fashion, it allows for the regularization parameter

λ = λk to be computed on-the-fly throughout the iterations. However, flexible Krylov

methods require storing all the computed basis vectors so that the memory requirements

increase with the number of iterations. The algorithm provided in this paper is an

adaptation from [48], using different boundary conditions for the discrete derivative

operator approximation and extending it to 3D.

Page 9 of 27 AUTHOR SUBMITTED MANUSCRIPT - PMB-114414.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



On Krylov Methods for Large-Scale CBCT Reconstruction 10

3. Numerical experiments

In this section, three representative numerical experiments are presented and

discussed to illustrate different aspects of the Krylov subspace methods described in

this paper. The aim of this section is to provide greater depth in the understanding of

the behaviour of the described algorithms in practice, which can be used as a blueprint

for ‘what to expect’ when using them in other data-sets, rather than producing and

exhaustive evaluation of Krylov methods against the entire reconstruction literature.

Due to the large number of reconstruction algorithms, the difficulty of obtaining real

datasets, and the task-specific nature of the quality metrics, this is beyond the scope of

this paper.

The first presented example consists of synthetic CT data, where the true image

is known and the results can be analyzed and discussed in detail: providing a

comprehensive comparison including relative error and residual norm histories. The

second experiment has the aim of showing the typical performance of these methods

on real data: it consists of a scan of the Alderson head phantom obtained in a Philips

Allura medical CT scanner that is reconstructed with full sampling and under-sampled

projections. Finally, a bumblebee image obtained with an industrial Nikon CT scanner

is reconstructed for some of the algorithms, in a real large-scale problem. Note that

the large-scale nature of the CBCT image reconstruction problems means that the

implementations are often in single precision floating point arithmetic.

The first two experiments were carried out in a laptop with a Intel Core i7-7700HQ

with 16GB of RAM and a GTX 1070 NVIDIA GPU. The µ-CT reconstruction was

performed in a machine with an AMD EPYC 7352 with 126GB of RAM and 4 NVIDIA

Quadro RTX 6000.

3.1. Comprehensive convergence comparison on synthetic data

In this experiment we explore the behaviour of the algorithms presented in this

paper in the context of 3D CBCT, using the available implementation in the TIGRE

toolbox. Since this is a simulated toy example, both the relative residual norms, i.e.

∥Axi− b∥/∥b∥, and relative error norms ∥xi−xgt∥/∥xgt∥ (for a given iteration number i

and a ground truth image xgt) can be computed. Relative residual norms are a natural

metric to understand the behaviour of the presented algorithms, as they are the values,

at each iteration, of the model fit, rescaled to ease comparison. For methods without

further regularization, this coincides with the value of the objective functional (3) that

we are minimizing, so this is a good indicator of the convergence of the algorithm to

the minimizer of the objective functional. However, for ill-posed problems, this might

be a bad indicator of the problem converging to a good approximation of the solution

of the original problem (1). The relative error norm is used in this case as a standard

application-agnostic metric to understand how close the reconstruction is to the true

solution, along with a qualitative inspection of the results.

The data presented in this example concerns the measurements of a synthetic
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LSQR hybrid LSQR

(GCV)

hybrid LSQR

(DP, 1.5% noise)

hybrid LSQR

(λ = 20)

hybrid LSQR

(λ = 2)

hybrid LSQR

(λ = 200)

Figure 1: Reconstruction of phantom head data using different LSQR versions and

parameter selection procedures. (top row) slice of final images, shown in range [0, 1]

mm-1 (bottom row) difference images w.r.t. the ground truth, shown in range [-0.1, 0.1]

mm-1.

dataset of a human head of size 64×64×64 with a detector of size 128×128 pixels,

using TIGRE’s default geometry mimicking a medical CT scanner‡. The results for

this experiment are presented an analysed in three different subsections. First, the

results for LSQR and hybrid LSQR (using different regularization parameter choices)

are displayed to illustrate the typical behaviour of Krylov methods for CT problems,

and can be observed in Figures 1 and 2. Second, the Krylov methods presented in

this paper for the least squares problems with and without Tikhonov regularization are

shown in Figures 3 and 4. Finally, a sparse-view version of the same simulation is used

to showcase the Krylov methods that enforce TV regularization.

3.1.1. Illustration of Krylov methods’ typical behaviour In this experiment, 60

equidistant angles spanning the full circular range are simulated, with added Poisson

noise (assuming an air photon count of I0 = 1× 105 in each pixel) and Gaussian noise

(with standard deviation of σ = 0.5) which model both the photon and electronic noise

expected in a CT scanner [49][50]. The reconstructions can be observed in Figure 1,

while relative residual and error norms are displayed in Figure 2.

First, we can observe that LSQR undergoes semiconvergence. As briefly mentioned

in Section 2.1, this is characterized by the decrease of the relative error norm in the first

iterations until it reaches a minima after which it starts increasing (see Figure 2(c));

while the residual norm is in exact arithmetic minimized at each iteration and therefore

decreases monotonically throughout the iterations (see Figure 2(a)). This phenomenon

is the reason why early stopping is crucial to obtain a good reconstruction in inverse

‡ Source detector distance of 1536 mm, source axis of rotation distance of 1000 mm, detector size of

409.6× 409.6 mm and an image spanning 256× 256× 256 mm.

Page 11 of 27 AUTHOR SUBMITTED MANUSCRIPT - PMB-114414.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



On Krylov Methods for Large-Scale CBCT Reconstruction 12

(a) (b) (c)

Figure 2: (a) Implicit relative residual norms, (b) computed relative residual norms and

(c) relative error norms for the algorithms of interest, per iteration.

problems with noisy measurements when using an iterative solver that acts directly on

the least squares problem (3).

Second, we want to illustrate how the choice of a good regularization parameter

is crucial to obtain a meaningful reconstruction when solving the Tikhonov problem

(7). As can be observed in both the reconstructions (Figure 1) and the relative error

norm histories (Figure 2(c)), the semi-automatic parameter choice criteria provided in

this implementation find appropriate parameters λk at each iteration to obtain a good

reconstruction without fine tuning. Alternatively, one can choose a parameter λ ahead

of the iterations. In this case, note that an under-regularized problem (see Figure 1

for λ = 2) will produce a noisy-looking image (in which case one should re-run the

algorithms using a higher value for the parameter λ); while an over-regularized problem

(see Figure 1 for λ = 200), will produce an overly smooth reconstruction (in which case

one should use a smaller value for λ).

Last, a very interesting thing to note is the mismatch between the theoretical

or implicit residuals in Figure 2(a), i.e. computed using ∥∥b∥e1 − Hkyi∥/∥b∥ or

mathematical recurrences (see [36] for LSQR), and the residuals computed explicitly

throughout the iterations in Figure 2(b), i.e. using ∥Axi − b∥/∥b∥ directly. This can be

due to loss of orthogonality (mainly attributed to the mismatched backprojector) or to

an accumulation of numerical errors and precision loss (most objects are stored in single

precision floating point arithmetic, with large differences in the order of magnitude of

the parameters). Note that this happens both for the algorithms that incorporate re-

orthogonalization and for the ones that do not. As this mismatch flags a deviation of the

algorithm from its expected behaviour in exact arithmetic, TIGRE explicitly computes

the residual norms at each iteration and stops the algorithm once they increase.

3.1.2. (hybrid) Krylov methods for least squares problems This experiment concerns a

dataset with 180 equidistant angular projections with the same noise distribution used in

the previous section (I0 = 1×105, σ = 0.5). The results for all the algorithms presented

in this work for the least squares problem with or without Tikhonov regularization,
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On Krylov Methods for Large-Scale CBCT Reconstruction 13

are shown for a maximum of 60 iterations. As a baseline, the results are compared to

the solutions computed with SIRT: a particular choice from the most commonly used

family of algorithms in CT, the SIRT-like family (SIRT, OS-SART, SART, etc) [8],

which is computationally equivalent to the Krylov methods used in this example (i.e.,

they have an equivalent amount of flops per iteration). Figure 3 shows a slice of the

reconstructed image obtained using the different methods on top of its corresponding

error (difference between the reconstructed slice and the ground truth). Figure 4 shows

the relative residual norm and relative error norm histories for all the algorithms against

the number of iterations.

In Figure 4 one can observe the very fast convergence of Krylov methods: both in

terms of the relative residual norm and of the relative error norm. In this particular

experiment, between 10 and 20 iterations of the compared Krylov subspace methods are

sufficient to obtain a good reconstruction of the original image while, after 60 iterations,

SIRT has still not converged and has failed to compute meaningful reconstruction. It

can also be observed that the different Krylov methods perform similarly, with LSQR

producing results of slightly better quality than CGLS in terms of error norm.

For this particular example, the iterations are stopped early if the norm of the

explicit residual increases between two consecutive iterations, as this is a sign of loss

of orthogonality in the basis vectors or of the accumulation of computational errors.

This happens for most compared Krylov subspace algorithms, and note that for CGLS,

LSMR and LSQR, as a side-effect, this leads to regularization by early stopping and

avoids the semiconverge behaviour. However, for these algorithms, one should stop the

iterations early even when the explicit residual norm does not increase (for example,

by monitoring the stabilization of the residual norm or using other stopping criteria).

It is also remarkable to observe that the AB/BA-GMRES algorithms less commonly

display increasing residuals, as they alleviate the problems associated with mismatched

backprojectors.

3.1.3. Krylov methods for total variation regularization For this experiment, the

simulated CT measurements of the dataset described in the previous section are reduced

and correspond to 60 equidistant projections: generating a more ill-posed problem

[11, Chapter 9]. Moreover, the Poisson noise for this problem is increased so that

I0 = 1 × 104 in each pixel. In this case, more prior information on the solution is

needed to obtain a good reconstruction of the original image, and therefore the described

methods involving TV regularization become more meaningful. In particular, CGLS,

CLGS with TV regularization and hybrid fLSQR with TV regularization are showcased

in this experiment. The reconstructions obtained by these methods after 60 iterations

can be seen in Figure 5, where the smoothing but edge preserving behaviour of the TV

regularization is visibly clear.

Figure 6 shows the relative residual norms and the relative error norms throughout

the iterations for the compared methods. In this example it can be clearly observed

that CGLS semiconverges due to the ill-posedness of the problem and the noise in the
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SIRT CGLS LSQR

LSMR

λ = 0

LSMR

λ = 30

hybrid LSQR AB-GMRES BA-GMRES AB-GRMES

B = FDK

BA-GRMES

B = FDK

SIRT CGLS LSQR

LSMR

λ = 0

LSMR

λ = 30

hybrid LSQR AB-GMRES BA-GMRES AB-GRMES

B = FDK

BA-GRMES

B = FDK

Figure 3: Reconstruction of phantom head data using several Krylov methods (top)

slice of final images, shown in range [0, 1] mm-1 (bottom) difference images w.r.t. the

ground truth, shown in range [-0.1, 0.1] mm-1.

Page 14 of 27AUTHOR SUBMITTED MANUSCRIPT - PMB-114414.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



On Krylov Methods for Large-Scale CBCT Reconstruction 15

(a) (b)

Figure 4: (a) Relative residual norms and (b) relative error norms for the compared

algorithms, per iteration.

CGLS CGLS-TV hybrid fLSQR-TV

Figure 5: Reconstruction of phantom head data using CGLS and TV regularized Krylov

methods. (top row) slice of final images, shown in range [0, 1] mm-1 (bottom row)

difference images w.r.t. the ground truth, shown in range [-0.1, 0.1] mm-1.

data. It is also important to explain that the behaviour of CGLS-TV in terms or relative

residual and error norms is expected. Here, the ‘peaks’ correspond to the starts of each

new cycle of inner iterations, also known as cold restarts. For this particular experiment,

the number of inner iterations in each cycle is chosen a-priori to be 12 iterations, but

this could also be set adaptively using a stopping criterion for the inner iterations. As

long as the number of inner iterations is sufficiently large, this algorithm produces very

good reconstructions with the properties expected of TV regularized solutions (this is

especially desirable for highly noisy datasets). The experiment shows that likely three
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(a) (b)

Figure 6: (a) Relative residual norms and (b) relative error norms for the compared

algorithms, per iteration.

outer iterations (36 iterations in total) would be sufficient for this particular example.

Finally, even if hybrid fLSQR-TV displays a slower decay of the residual norm, it still

produces fastly decreasing error norms compared to CGLS-TV, and does not exhibit

semiconvergence. Note that this method does not require to set a number of inner

iterations, and the regularization parameter can be chosen semi-automatically on-the-

fly. However, it requires storing all the generated basis vectors and has the additional

cost of an (approximated) matrix-vector product with L†
A(L

†
A)

T at each iteration (in the

codes provided, this is done efficiently using an iterative method).

3.2. Medical CT experiments

This experiment concerns a medical imaging application and has the aim to

highlight the performance of Krylov subspace methods on real data. In particular, the

computational times for the different algorithms are given in this example to highlight

the fast convergence of Krylov methods. Since there is no ‘ground-truth’ for this

experiment we assess the reconstructions based on a qualitative inspection of the results

compared to FDK, and on the evaluation of the relative residual norm history (i.e. the

relative residual norm stabilizing close to convergence).

The dataset used in this experiments consists of the Alderson head phantom

measurements, acquired on a Philips Allura FD20 Xper C-arm with source settings

of 80 kV and an exposure of 350 mAs, spanning a 210° angular range. Projections

of size 512×512 have been used to reconstruct an image of size 256×256×200 voxels.

Figure 7 shows two views of the image reconstructions given by different algorithms. The

following explanations and comparisons are applied to both the sagittal plane (Figure

7(a)) and the transversal plane (Figure 7(b)) of the different reconstructions. The first
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row shows images reconstructed by FDK (considered clinical standard) and SIRT with

30 and 150 iterations, respectively. Note that the choice of 30 iterations for SIRT is taken

to match the computational time required for Krylov methods to obtain a meaningful

reconstruction (it can be observed that the quality of the reconstruction using SIRT

in this case is not very good), while the choice of 150 iterations is taken so that SIRT

displays an equivalent quality of the reconstructions than Krylov methods (taking 3

minutes and 50 seconds, almost 8 times slower than Krylov methods). In the first column

of the second row, OS-SART (the ordered subset version of SIRT), is shown after 60

iterations (chosen to reach a reasonable convergence). Albeit the number of required

iterations is smaller than for SIRT, OS-SART takes 6 min 30 seconds to reconstruct this

image§. In the second and third columns of the second row, the reconstructions obtained

using CGLS and LSQR are shown after 30 iterations (corresponding to 30 seconds of

run-time). The third row, from left to right, shows the reconstructions obtained using

LSMR (with λ = 0), LSMR (with λ = 30) and hybrid LSQR, all of them after 30

iterations and 30 seconds of run-time. The reconstructions obtained with the studied

iterative methods look less grainy than the baseline reconstruction obtained using FDK.

In this experiment one can observe that iterative methods produce image

reconstructions of similar or higher quality than the clinical standard FDK. Moreover,

Krylov subspace methods are able to do so in significantly less computational time

compared to other classic iterative reconstruction methods. This is of particular use in

clinical CT, where lower reconstruction time is needed to maximize throughput (i.e.,

the number of images and actions over them that can be processed per unit of time).

In the following, the reconstruction results for the same example with a fifth of the

projection data are shown to simulate a sparse sampling CT scan. Figure 8 displays the

results in the same order and for the same number of iterations already described for

Figure 7. In this scenario, the Krylov subspace methods produce a good reconstruction

in less than 15 seconds. Note that using SIRT in a comparable time (30 iterations)

produces overly smooth reconstructions, i.e. they appear less noisy but the lack of

sharpness in the edges might lead to the loss of important features in the image.

Finally, TV regularized Krylov algorithms are used in this experiment with under-

sampled projections to showcase the impact of this type of regularization on challenging

CT scans. Figure 9 shows, for comparison, the reconstructions obtained using LSQR

after 30 iterations (same as in Figure 8), OS-ASD-POCS, an ordered subset version

of a well known TV regularized algorithm in tomography [51] after 60 iterations; and

CGLS with TV regularization (2 outer and 15 inner iterations). For this experiment,

the running time for CGLS-TV is 1 minute, while the running time for OS-ASD-POCS

is 2 minutes. It is not straightforward to establish a fair comparison purely between

these two algorithms in terms of reconstruction quality, as they require the choice of

§ This is specific for the particular TIGRE implementation. Faster subset algorithms can be developed

using specific implementations that minimize CPU⇔GPU memory transfers. However, they require a

larger amount of computations per iteration than other iterative methods, so they will still be slower

than the other algorithms shown in this paper.

Page 17 of 27 AUTHOR SUBMITTED MANUSCRIPT - PMB-114414.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



On Krylov Methods for Large-Scale CBCT Reconstruction 18

FDK SIRT
30 iter

SIRT
150 iter FDK SIRT

30 iter
SIRT
150 iter

OS-SART
60 iter

CGLS
30 iter

LSQR
30 iter OS-SART

60 iter
CGLS
30 iter

LSQR
30 iter

LSMR
30 iter, λ = 0

LSMR
30 iter, λ = 30

hybrid LSQR
30 iter LSMR

30 iter, λ = 0
LSMR

30 iter, λ = 30
hybrid LSQR

30 iter

Figure 7: Reconstruction of the Alderson head phantom acquired on a Phillips Allura

FD20 Xper C-arm, using 289 projections. Image shown in range [0, 3] mm-1 for the (left)

sagittal plane, (right) transversal plane. SIRT 30 iterations and the Krylov subspace

algorithms terminate within 35 seconds, while SIRT 150 iteration takes 3 minutes 50

seconds and OS-SART 6 minutes 30 seconds to converge to a solution of comparable

quality.

different regularization hyperparameters (and there is no direct translation between

the parameters for both of these algorithms). These will have a great influence in the

reconstruction, balancing a closer reproduction of the fine detail features and a general

smoother piece-wise constant appearance of the images. However, the results show that

CGLS-TV produces good results (relatively smooth with sharp edges), while preserving

the finer details of the image structures. Note that the hybrid fLSQR algorithm was

not used in this experiment because the high memory needs of this algorithm were too

big for the machine in which the experiments were run: this algorithm, in its current

state, may not be suitable for a medical-size dataset.

3.3. µ-CT scan

This experiment showcases the use of the methods presented in this work in very

large-scale problems where the radiation dose is not an issue. The scanned object is a

wild buff-tailed bumblebee (bombus terrestris)∥, scanned on a Nikon HMX 225 kVp CT

∥ The unfortunate individual was found dead in the X-ray CT laboratory after getting trapped inside

and became an essential part of the laboratory as an independent research dataset.
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FDK SIRT
30 iter

SIRT
150 iter FDK SIRT

30 iter
SIRT
150 iter

OS-SART
60 iter

CGLS
30 iter

LSQR
30 iter OS-SART

60 iter
CGLS
30 iter

LSQR
30 iter

LSMR
30 iter, λ = 0

LSMR
30 iter, λ = 30

hybrid LSQR
30 iter LSMR

30 iter, λ = 0
LSMR

30 iter, λ = 30
hybrid LSQR

30 iter

Figure 8: Reconstruction of the Alderson head phantom acquired on a Phillips Allura

FD20 Xper C-arm, using 58 projections. Image shown in range [0, 3] mm-1 for the (left)

sagittal plane, (right) transversal plane. SIRT 30 iterations and the Krylov subspace

algorithms terminate within 15 seconds, while SIRT 150 iteration takes 1 minutes 30

seconds and OS-SART 1 minutes 50 seconds to converge to a solution of comparable

quality.

LSQR
30 iter

OS-ASD-POCS
60 iter

CGLS-TV
30 iter

Figure 9: Reconstruction of the Alderson head phantom acquired on a Phillips Allura

FD20 Xper C-arm, using 58 projections. Image shown in range [0, 3] mm-1 of (top row)

the sagittal plane (bottom row) the transversal plane.
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scanner at 40 kVp with a molybdenum target. The detector was a Perkin Elmer 1621

with a gadolinium oxysulphide scintillator. The detector is of size 2000× 2000 and we

used 256 projections uniformly distributed around the circle. The reconstructed image

is 1400× 1400× 2000 with a resolution of 11.8 µm per voxel. Figure 10 shows the FDK

reconstruction and LSQR reconstruction with 20 iterations (15 minutes of computational

time). The different nature of the reconstructed images can be seen. In particular, the

attenuation values of the tissue of the bumblebee are more uniform in LSQR (uniformity

in the tissues is the expected result) and some features are better distinguished from

the noise, particularly noticeable in the middle thin string-like structure in the zoomed-

in area. However, this reconstruction also highlights one potential issue with iterative

methods when mismatches in data consistency are present in the measurements. In

particular, for some acquisitions where the edges of the projections might have errors

due to e.g. photon starvation, or partial views of samples, iterative algorithms might

produce artifacts that propagate through the image, as one can see in the stripe artifacts

arising near the head (right part) of the Bumblebee, to the point where some features are

considerably worse, or missing. In particular, the acquisition process for this dataset:

highly sampled but with limited field of view (not the entire sample is in the imaging

domain) favours FDK reconstructions over iterative methods. Therefore, while it is

important to remark that some of the artifacts produced with Krylov methods can

be easily alleviated using data acquisition techniques that are tailored for iterative

algorithms, it is also important to note that the acquisition process is a very important

factor to consider when reconstructing already available datasets. However, we have

shown that it is feasible to use Krylov subspace methods in really large-scale settings,

so exploring different data acquisition techniques becomes a relevant problem.

4. Discussion

This section provides a discussion on some aspects reported in the numerical

experiments, as well as some guidance on how to use some of these methods, with

the aim of explaining potential issues that one might encounter when applying these

algorithms to other datasets.

One of the results that is mentioned in this paper is the fact that, in practice, the

real residual norm can increase throughout the iterations due to a loss of orthogonality

(this is not expected in exact arithmetic for the methods that theoretically minimize the

residual at each iteration) or due to an accumulation numerical errors (this behaviour

is also observed for the algorithms that incorporate re-orthogonalization). As described

in the previous sections, this is mostly due to the use of an unmatched backprojector.

The TIGRE toolbox provides an approximation of a matched backprojector [52] that

mitigates the diverging behaviour in the implicit and explicit residual norms for the

Krylov methods. Similarly, this is also mitigated when using algorithms that incorporate

re-orthogonalization (but these come with the added cost of having to store all the

computed basis vectors). An even better solution would involve implementing matched
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Figure 10: FDK (top) and LSQR 20 iterations (bottom) reconstruction of a µ-CT scan

of a Bumblebee. The reconstruction is of size 1400×1400×2000, using 256 projections of

a 2000× 2000 detector. Zoomed area shows the different nature of the reconstructions,

highlighting the noise rejection nature of iterative reconstruction. The small line in

the center of the zoomed area can be better distinguished in the LSQR image. Image

displayed at [0, 0.1] mm-1.

projection/backprojection operators, such as the distance driven projectors [53], or

pixel driven matched projector approximations [54]. Further research on the impact

of numerical precision on Krylov methods would also be beneficial.

A natural question that can arise from applied scientist is which algorithm is the

“best”. First, this is an unanswerable question in general, as the algorithm choice (as

well as the desired type and level of regularization) should heavily depend on the specific

problem in mind and the purpose of the reconstruction. For example, if one would only

want to have a general understanding of the structure of the internals of the Bumblebee

in Figure 10, FDK provides a sufficiently good image quality. Perhaps this would not

hold if a quality segmentation of the image was required. Often the right algorithm

choice for the reconstruction depends on what the image will be used for, instead of
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some arbitrary image quality metric. In fact, there is a nuanced discussion to have about

the use of image quality metrics (such as SSIM, UQI, RMSE) to evaluate the results, as

these are based on preconceptions on what natural images should look like, rather than,

for example, clinical relevance [55, 56]. Following from this, we decided to avoid using

these metrics in this paper to evaluate the performance of the algorithms. Instead, we

opted for qualitative metrics for the quality of the reconstructions (choosing “meaningful

reconstructions” leveraging a small error norm and desirable observable properties such

as smoothness of the background and sharpness of the edges) and standard quantitative

metrics for the convergence of the algorithms across the iterations. As a matter of fact,

the objective of this work is not to “rank” the described algorithms, but to compare

their properties and to supply easy to use and reproducible tools for exploration.

Some tips can be provided on the general use of these algorithms. It is

recommended to use LSQR over CGLS, as it is a more stable algorithm but they are

mathematically equivalent. In general, for severely undersampled CT measurements,

especially with high noise levels, explicit regularization is recommended. In particular,

TV regularization can be very beneficial to promote sharp edges (note that this is not

only true for Krylov methods). Moreover, high regularization will produce less grainy

reconstructions, but over-regularizing might lead to loosing tissue/material texture

properties; this can be beneficial in some contexts, e.g. segmentation or classification,

but a problem in other contexts, e.g. when the finer details are important and the

noisy appearance of the reconstruction is not a problem. Finally, if enough memory

is available (an image per iteration), algorithms with explicit re-orthogonalization are

recommended, such as AB/BA-GMRES, to mitigate the problems derived from the loss

of orthogonality.

It is also important to state that this is a representative but by all means not

comprehensive list of all Krylov methods and their corresponding features; such as

stopping criteria, see, e.g. [57] or parameter selection criteria, see e.g. [18][19].

Similarly, many direct, variational, and more recently machine learning methods are

being developed. The authors encourage the public to contribute to this work by

submitting new algorithms or improving the ones available at the TIGRE toolbox.

5. Conclusions

This work describes and compares a variety of Krylov subspace methods for applied

large-scale 3D CT and CBCT reconstruction, some of them used in this context for the

first time. In particular, the methods included in this work are summarized in Table 1.

The considered Krylov methods are compared and discussed in the numerical ex-

periments, see Section 3, where it can be clearly observed that the main strength of

Krylov subspace methods is their fast convergence compared to the most commonly

used SIRT-like methods in iterative CT reconstruction. This is of crucial importance

in medical applications, for example in image guided therapies where almost real time
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reconstructions are needed, but also in industrial applications where a high number of

iterations is unfeasible due to the big dimensionality of the problems.

Finally, all the results shown in the paper are reproducible, and all the methods are

provided as open source and freely accessible algorithms within the framework of the

TIGRE toolbox. Some guidance on how to use these methods and a small discussion

on potential results and issues one might encounter when using them on other datasets

is given in the discussion, see Section 4. All the methods presented in this work can be

found at github.com/CERN/TIGRE under a permissive BSD-3 clause license.
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Table 1: List of iterative methods detailed in the paper. Here ‘Objective’ describes

the optimization problem that is solved: LS referring to the least-squares problem (3),

Tikh. referring to the Tikhonov-regularized least-squares problem (7), hybrid referring

to adding Tikhonov regularization to the projected problem at each iteration (9), TV

referring to the least-squares problems with added total variation regularization (14).

Note that Tikhonov regularization for a known regularization parameter λ can also be

applied considering the augmented system (8) and using any solver for LS. Finally, note

that algorithms cited with an asterisk required a significant adaptation from the original

papers.

Method Description Objective Ref.

CGLS Conjugate gradient method applied to the normal

equations. Minimizes the residual norm.

LS [17]

LSQR Mathematically equivalent to CGLS, using GK bidi-

agonalization, implemented with short recursions.

Minimizes the residual norm.

LS [36]

LSMR Algortihm based on the GK bidiagonalization,

minimizes the normal equations residual norm. The

regularization parameter λ can be provided ahead of

the iterations.

LS (λ=0)

Tikh. (λ̸=0)

[37]

AB-GMRES

BA-GMRES

Adaptations of GMRES (minimal residual method

using Arnoldi decomposition) using a given approx-

imation of the backprojector as either left or right

preconditioning. It is more robust for unmatched

backprojectors.

LS [27]

hybrid LSQR Hybrid version of LSQR to solve Tikhonov regular-

ized problems. The regularization parameter λ can

be chosen ahead of the iterations or using a param.

choice criteria (DP or GCV).

hybrid [42]

TV-CGLS Approximation of TV using a sequence of quadratic

tangent majorants that are solved with CGLS.

TV [44]*

TV-FLSQR Approximation of TV using a sequence of quadratic

tangent majorants that are partially solved through-

out the iterations using FLSQR. It is faster than TV-

CGLS but has a high storage cost.

TV [48]*
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[47] Silvia Gazzola and Malena Sabaté Landman. Flexible GMRES for total variation regularization.

Bit Numer. Math., 59:721–746, 2019.

[48] Silvia Gazzola, Sebastian J. Scott, and Alastair Spence. Flexible Krylov methods for edge

enhancement in imaging. Journal of Imaging., 7:43–71, 2021.

[49] Jingyan Xu and Benjamin M.W. Tsui. Electronic noise modeling in statistical iterative

reconstruction. IEEE Transactions on Image Processing, 18(6):1228–1238, 2009.

[50] Yan Liu, Jianhua Ma, Yi Fan, and Zhengrong Liang. Adaptive-weighted total variation

minimization for sparse data toward low-dose x-ray computed tomography image reconstruction.

Physics in Medicine & Biology, 57(23):7923, 2012.

[51] Emil Y. Sidky and Xiaochuan Pan. Image reconstruction in circular cone-beam computed

tomography by constrained, total-variation minimization. Physics in Medicine & Biology,

53(17):4777, 2008.

[52] Xun Jia, Yifei Lou, John Lewis, Ruijiang Li, Xuejun Gu, Chunhua Men, William Y. Song, and

Steve B. Jiang. GPU-based fast low-dose cone beam CT reconstruction via total variation.

Journal of X-ray science and technology, 19(2):139–154, 2011.

[53] Bruno De Man and Samit Basu. Distance-driven projection and backprojection in three

dimensions. Physics in Medicine & Biology, 49(11):2463, 2004.

[54] Richard Martin Huber. Pixel-Driven Projection Methods’ Approximation Properties and

Applications in Electron Tomography. PhD thesis, University of Graz, 2022.

[55] Jean-François Pambrun and Rita Noumeir. Limitations of the SSIM quality metric in the context

of diagnostic imaging. In 2015 IEEE International Conference on Image Processing (ICIP),

pages 2960–2963, 2015.

[56] B. Girod. Psychovisual aspects of image processing: What’s wrong with mean squared error?

In Proceedings of the Seventh Workshop on Multidimensional Signal Processing, pages P.2–P.2,

1991.

[57] Per Christian Hansen, Jakob Sauer Jørgensen, and Peter Winkel Rasmussen. Stopping rules for

algebraic iterative reconstruction methods in computed tomography. In 2021 21st International

Conference on Computational Science and Its Applications (ICCSA), pages 60–70, 2021.

Page 27 of 27 AUTHOR SUBMITTED MANUSCRIPT - PMB-114414.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t


