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Abstract

Precise instrument placement plays a critical role in all interventional procedures, especially percutaneous procedures
such as needle biopsies, to achieve successful tumor targeting and increased diagnostic accuracy. C-arm cone beam com-
puted tomography (CBCT) has the potential to precisely visualize the anatomy in direct vicinity of the needle and evaluate
the adequacy of needle placement during the intervention, allowing for instantaneous adjustment in case of misplacement.
However, even with the most advanced C-arm CBCT devices, it can be difficult to identify the exact needle position on
CBCT images due to the strong metal artifacts around the needle. In this study, we proposed a framework for customized
trajectory design in CBCT imaging based on Prior Image Constrained Compressed Sensing (PICCS) reconstruction with
the goal of reducing metal artifacts in needle-based procedures. We proposed to optimize out-of-plane rotations in three-
dimensional (3D) space and minimize projection views while reducing metal artifacts at specific volume of interests
(VOIs). An anthropomorphic thorax phantom with a needle inserted inside and two tumor models as the imaging targets
were used to validate the proposed approach. The performance of the proposed approach was also evaluated for CBCT
imaging under kinematic constraints by simulating some collision areas on the geometry of the C-arm. We compared the
result of optimized 3D trajectories using the PICCS algorithm and 20 projections with the result of a circular trajectory
with sparse view using PICCS and Feldkamp, Davis, and Kress (FDK), both using 20 projections, and the circular FDK
method with 313 projections. For imaging targets 1 and 2, the highest values of structural similarity index measure
(SSIM) and universal quality index (UQI) between the reconstructed image from the optimized trajectories and the initial
CBCT image at the VOI was calculated 0.7521, 0.7308 and 0.7308, 0.7248 respectively. These results significantly out-
performed the FDK method (with 20 and 313 projections) and the PICCS method (20 projections) both using the circular
trajectory. Our results showed that the proposed optimized trajectories not only significantly reduce metal artifacts but
also suggest a dose reduction for needle-based CBCT interventions, considering the small number of projections used.
Furthermore, our results showed that the optimized trajectories are compatible with spatially constrained situations
and enable CBCT imaging under kinematic constraints when the standard circular trajectory is not feasible.
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1 Introduction

Precise instrument placement is a critical step in all per-
cutaneous needle-based interventional procedures, especially
needle biopsies; this contributes to more accurate needle
positioning and increases diagnostic accuracy [1,2]. With
the increasing importance of minimally invasive treatments
due to their efficacy and safety, the need for high-
precision imaging has become paramount. C-arm cone beam
computed tomography (CBCT) is a relatively new imaging
technique that is frequently used in percutaneous procedures
for lesions in soft tissue organs, e.g., liver and lung biopsies
[3,4]. This modality allows real-time visualization of organs,
low-dose scans, and is equipped with an open gantry that
provides the user with flexibility for high-precision needle
positioning even in technically challenging situations. For
needle-based procedures, there is a need for an imaging
modality that can accurately visualize the anatomy in close
proximity to the needle to assess the appropriateness of nee-
dle placement during the procedure and allow for immediate
adjustment in the case of misplacement. C-arm CBCT
devices have the potential to provide such information intra-
operatively. However, even with the most recent C-arm
CBCT systems, capturing the exact needle position on the
intraoperative CBCT image is challenging due to strong
metal artifacts around the needle [5,6]. Refining the quality
of intraoperative CBCT reconstructions for needle placement
therefore holds great potential for improving target localiza-
tion during interventions, allowing for immediate revision
and thus reducing both the number of misdiagnoses and
the need for subsequent biopsy interventions. Some strate-
gies proposed in the literature to reduce metal artifacts in
CBCT images are based on post-processing the acquired
data in the projection domain [6,7]. In addition, optimal
sinusoidal source-detector trajectories have recently been
proposed to avoid artifacts originating from the metal parts
of the imaged object, while still providing high coverage
in the Radon space and its surroundings [8,9]. In recent
years, it has been shown that nonconventional CBCT trajec-
tories can have an impact on reducing metal artifacts and
noncircular orbits can be used to avoid unfavorable projec-
tion views, thus significantly improving image quality near
metal objects [8,10]. The authors in [11] proposed an on-
the-fly orbit optimization approach to improve the image
quality of the reconstruction in the presence of artifacts
caused by metal screws during spine surgery. They per-
formed the adjustments using a Convolutional Neural Net-
work (CNN) during the scan and regressed an image
quality metric over all possible next projections of the cur-
rent X-ray image. Adjusting the scan trajectory to achieve
optimal projection views resulted in non-circular source-
detector trajectories that avoided poor images and improved
imaging performance, especially with respect to metal
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artifacts. In [12], a method to reduce the effects of metal arti-
facts by prospectively defining the source-detector orbits of
the C-arm was proposed. Their proposed method could mit-
igate metal-related distortions in the projection data and did
not require accurate prior information about the patient or
metal implants. Their approach involved coarse localization
of metal objects, model-based approximation of metal-
induced X-ray spectral shift related to possible trajectories,
and detection of optimized orbits to reduce spectral shift
variation.

In [8,13,14] non-circular trajectories were proposed to
maximize data completeness in the presence of metal. The
main goal was to use X-rays that pass through the target
object but avoid X-rays that pass through the metal object
for the reconstruction. They proposed a local metric for data
completeness based on Tuy’s condition. Their measure
accounts for the presence of metal object by counting the
percentage of great circles which are sampled by an individ-
ual trajectory. In another study using the same image quality
metric [9], optimized non-circular orbits were designed in
simulations with the goal of maximizing Tuy’s condition
in the presence of metal objects. The trajectories they
designed showed a remarkable reduction in metal artifacts
and also a significant visibility of in-plane structures that
would be obscured by the metal object. Their approach
was also resilience when having multiple metal objects.
The common reconstruction methods in literature used for
CBCT trajectory optimization are penalized-likelihood
reconstruction [9,11,24] and total variation regularized meth-
ods, such as adaptive steepest descent projection onto con-
vex set (ASD-POCS) [19,20]. In [15], the authors reported
a significant reduction in artifacts and improvement in CT
image quality in hip replacement patients using a Prior
Image Constrained Compressed Sensing (PICCS)-based
algorithm. In addition, in [16], the authors developed a
PICCS CT-based iterative reconstruction algorithm based
on a superiorization method to reduce metal artifacts. Their
algorithm used a previous image reconstructed with the nor-
malized metal artifact reduction technique and could remove
the most severe streaking artifacts originating by metal
objects. Furthermore, in [17,18], the authors reported the
high performance of the PICCS method for cardiac interven-
tional imaging when using an under-sampled projection
acquisition using CBCT device. In the studies [15–18], the
proposed PICCS reconstruction-based methods were either
developed and validated for CT imaging [15,16], or no metal
object was included [17,18]. In addition, PICCS algorithm
was never used in CBCT imaging together with trajectory
optimization.

In this study, we validated the performance of the
sparse-view PICCS reconstruction combined with cus-
tomized three-dimensional (3D) source-detector CBCT tra-
jectories to reduce metal artifacts in needle-based
ptimization for CBCT metal artifact reduction based on PICCS reconstruction, Z Med Phys,
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procedures where a prior standard CBCT is available. An
anthropomorphic thorax phantom into which a needle was
inserted was used to verify the proposed approach. To
our knowledge, this is the first study to investigate the pos-
sibility of reducing metal artifacts with the PICCS algo-
rithm in needle-based CBCT procedures. In addition, the
combination of sparse-view PICCS reconstruction with
optimal 3D projection views has not yet been investigated.
We also evaluated the performance of the PICCS algorithm
in reconstructing unconventional trajectories under kine-
matic constraints where a standard circular trajectory is
not possible.

2 Materials and methods

This section explains the pipeline used for the proposed
metal artifact reduction and trajectory optimization using
the PICCS algorithm. In section 2.1, the general workflow
of the proposed method is presented in a high-level over-
view. Section 2.2 introduces the C-arm CBCT device used
in this work, and the data acquisition. Section 2.3 describes
how the projection data has been simulated with approxima-
tion of real noise sources. Section 2.4 briefly introduces the
PICCS image reconstruction algorithm and section 2.5 intro-
duces three different trajectory optimization procedures that
are evaluated in this work. A brief comment in computa-
tional implementation of PICCS is introduced in 2.6. Finally,
section 2.7 introduces all the experimental setting for the
scanner experiment results.

2.1 Workflow for metal artifact reduction based on
PICCS algorithm and customized CBCT trajectories

In our proposed workflow (Fig. 1), we suggest creating a
case-specific model from a prior standard CBCT. This
CBCT scan is acquired at the beginning of the procedure
before needle placement and serves as a prior image used
for PICCS reconstruction of the subsequent CBCT scans.
First, a simulation where a needle is digitally inserted into
the prior CBCT is performed, using information about the
position of the needle provided by the surgeons, derived
from surgery planning stage. This prior CBCT with the dig-
itally inserted needle is used as a digital phantom for trajec-
tory simulation and target delineation. A set of possible X-
ray source-detector trajectories is then defined, taking into
account the kinematic constraints of the imaging device
and the treatment room. In an optimization procedure (Sec-
tion 2.5), synthetic digitally rendered radiographs (DRRs) of
projections for the defined source-detector trajectories are
generated, reconstructed using the PICCS algorithm, and
quantitatively evaluated to find the best trajectory with the
highest value of an objective function. After placing the nee-
dle in the real situation (similar position as the digitally
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inserted needle), the optimized trajectory selected in the sim-
ulation phase is applied to the CBCT device to acquire real
projections for reconstruction.

2.2 Imaging device and data acquisition

In this study, we used a Philips Allura FD20 Xper C-arm
with 1195 mm source-detector distance, 810 mm source-axis
distance, and a 30 � 40 cm2 detector with 0.776 mm pixel
pitch. This device can rotate by angle h1 toward right ante-
rior oblique (RAO)/left anterior oblique (LAO) direction
while having an oblique w at different cranial (CRA)/caudal
(CAU) angles. It is also able to rotate by angle h2 toward
CRA/CAU direction while having an oblique u at different
RAO/LAO angles [19].

For data acquisition, the space of possible positions is
derived from spatial constrains of the setup. Considering
the needle inserted into the phantom, RAO/LAO rotation
with a maximum oblique w of 20� was feasible in both
CRA and CAD directions. Additional constraints due to
other medical devices and patient table might also occur in
a clinical setting. To mimic such constraints, an arbitrary
“forbidden area” is introduced into the spatial range of pos-
sible trajectories, similar to our previous study [19,20].
These kinematic constraints will be taken into account when
designing the optimized trajectories (Section 2.5) so that the
trajectory does not include the forbidden region. The defined
forbidden area used in this study was chosen based on a real-
istic case scenario in clinic and serves to demonstrate the
flexibility of the chosen trajectory in handling and selecting
the angular range outside a defined collision area. This
approach has been used in our two previous studies
[19,20] to develop collision avoidance customized trajecto-
ries. Based on our approach, the trajectory search space is
defined as all possible regions where the device can rotate
in 3D space, except the defined forbidden region, and then
trajectories that do not interface with such a collision region
(according to where this forbidden region is defined or its
shape or size) are defined (e.g., sinusoidal trajectories or
combinations of multiple arcs (Section 2.5)). Then, the opti-
mized trajectories can be determined from those possible tra-
jectory options. The generalization of collision areas has
already been investigated and proved in our previous study
[20] where two different forbidden areas with different size
and shape were simulated.

2.3 Projection simulation

In order to create synthetic projections, Poisson noise was
added and Bare-beam fluence was modeled with I0=10

4 pho-
tons per detector element as in our previous study [19],
approximating device exposure with 350 mAs and beam
energy of 80 kV. Source-detector and source-isocenter
distances were set to 1195 mm and 810 mm respectively,
ptimization for CBCT metal artifact reduction based on PICCS reconstruction, Z Med Phys,
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Figure 1. Schematic of the workflow for our proposed customized CBCT imaging with the goal of needle-based metal artifact reduction. A
prior standard CBCT is acquired and used as a digital phantom for simulation. A needle is digitally inserted into the digital phantom and
different possible trajectories are simulated. The trajectory with the optimal angulation is selected and implemented on the C-arm. Real
projection data is then used to reconstruct the final image.
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corresponding to the geometry of the Philips Allura FD20
Xper C-arm device. All DRRs included a 30 � 40 cm2

detector size and 0.776 mm pixel pitch was simulated to
match with the detector specifications. The forward projec-
tions were simulated using the ray-driven method based on
graphics processing unit (GPU) implementation using the
hardware-accelerated trilinear interpolation [26]. The needle
was digitally introduced into the image from the phantom
obtained by CBCT previously (including tumor models
(see Section 2.7.1)) using the CurveMaker module in 3D Sli-
cer. Photon starvation and beam hardening [27,28] were also
simulated to replicate the effect of metal artifacts on the
reconstructed image.

To simulate the photon starvation, the digitally inserted
metal needle was segmented from the original CBCT image
and an image containing only the needle was created. For-
ward projection was applied to both the original CBCT
image with the digital needle and the image including only
the segmented needle, and the created projections were com-
pared. Finally, the pixel values related to projected needle in
the image containing only needle were determined and set to
zero in the projections created from the original CBCT. We
also used a simplified approach to simulate the beam
hardening effect. Three volumes were simulated, each one
corresponding to a different photon energy. To approximate
the real projections as closely as possible, the spectral
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attenuation coefficients of the needle voxels were deter-
mined empirically, comparing the images with the real mea-
sured and reconstructed images. Then, the projections from
the volumes were averaged to obtain the simulated data with
beam hardening.

2.4 PICCS image reconstruction

The PICCS algorithm comes from a Compressed Sensing
(CS) formulation of the reconstruction problem. Given a lin-
ear system of equations

Ax ¼ bþ e
�
; ð1Þ

where x is a lexicographically ordered vector of an image, b
is the lexicographically ordered vector of the measured pro-
jections,A is a linear system model that describes the x-ray

transform and e
�
is the error, a CS objective function can

be proposed as

argmin
x

jwxj1; s:t: Ax ¼ b; ð2Þ

where w is some sparsifying transform. Typically, in medical
CT this transform is the discrete gradient operator, as
humans tend to have small L1-norm of the image gradient,
thus tend to have very sparse image gradients. The L1 norm
of the discrete gradient is commonly referred to as the total
variation (TV). For example, the well-known ASD-POCS is
formulated in this way [21].
ptimization for CBCT metal artifact reduction based on PICCS reconstruction, Z Med Phys,
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PICCS builds on this formulation by introducing a prior
image, xp and instead uses the following function

argmin
x

jð1� aÞ wðx� xpÞ
� �j1 þ ja wxð Þj

1
; s:t: Ax ¼ b; ð3Þ

where a is a parameter that controls the strength of the prior
image constraint. In this work, we solve the above equation
using the ASD-POCS algorithm too. At a ¼ 1, the method
becomes a purely TV minimizing algorithm, as in the orig-
inal ASD-POCS work. In this work, a= 0.08.

2.5 Trajectory optimization methods

Several trajectory optimization approaches have been
proposed in the literature [10] for customizing CBCT trajec-
tories, including simple optimization methods such as
greedy [22,14] and brute force [11,19] to heuristic methods
such as covariance matrix adaptation evolution strategy
(CMA-ES) [23] and genetic algorithm (GA) [24] or combi-
nation of brute force and heuristic approaches [20].

In this study, we investigated the performance of four dif-
ferent trajectory optimization methods; the first two methods
are proposed in this work and the other two methods have
already been proposed in the literature. As the objective
function, we used the value of structural similarity index
measure (SSIM) [25] to evaluate the performance of the tra-
jectories in the simulation phase for all optimization meth-
ods. The number of projections for each optimized
trajectory was set to 20 in this study.

2.5.1 Method 1
In this method, we search for the best combination of the

short sinusoid trajectories which gives the highest recon-
struction performance in a pre-defined VOI. A series of
150 sinusoids with the entire possible rotation range at dif-
ferent random frequencies are simulated taking into account
the possible range of the device movement. The sinusoid tra-
jectories are divided into defined number of parts (in this
study two parts) to provide higher flexibility in the presence
of unavoidable kinematic constraints. Then, DRRs related to
those short trajectories are simulated on the CBCT-based
digital phantom and image reconstruction step is then per-
formed for the entire set of short sinusoid trajectories and
the objective function is calculated in the VOI, selecting
the short trajectory with best value. The selected first short
trajectory is eliminated from the search list, appended to
all other short trajectories in the search space, and the algo-
rithm is run again to find the second-best short sinusoid tra-
jectory. The combination of the best two short sinusoid
trajectories is returned as the optimized trajectory. The opti-
mization steps are summarized in Method 1. This approach
is similar to Method 3 (Section 2.5.3) [19] with the differ-
ence that best combination of the short sinusoid trajectories
are used instead of combination of normal short arcs.
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Method 1: Trajectory optimization
Input: Search space; possible projections

Step 1: Define a set of sinusoid trajectories at different
random frequencies which are feasible considering the
real device movement range and other
Step 2: Divide each sinusoid trajectory into two parts
Step 2: Simulate projections for all defined short sinu-
soid trajectories on the prior CBCT digital phantom
Step 3: FOR 1: number of short trajectories

� Reconstruct the image using the set of DRRs
related to the corresponding short trajectory

� Crop the reconstructed image at the VOI
� Calculate the objective function at the cropped

area
ENDFOR
Step 4: Find the best short sinusoid candidate which
can maximize the objective function and remove it
from the search space
Step 5: Append best candidate to all other short sinu-
soid trajectories in the
search space
Step 6: find the second-best short trajectory which its
combination with the first trajectory maximizes the
objective function by repeating Step 3 and Step 4
Step 7: Return selected trajectory (combination of two
short sinusoid trajectories)

2.5.2 Method 2
This method uses orbits that are a continuous function of

the rotation angle h1 and gantry tilt w. A simple parameter-
ization as proposed in [24] is used which involves periodic
basis functions using constant, sine, and cosine terms:

w h1ð Þ ¼
Xk

i¼1

Xibiðh1Þ; b1 h1ð Þ ¼ 1; b2 h1ð Þ ¼ sin h1;

b3 h1ð Þ ¼ cos h1; b4 h1ð Þ ¼ sin 2h1; � � � ; ð4Þ

Initial X set with k random values:

X ¼ rand½�1;þ1� ð5Þ

Where rand is the random operator that selects random
values between the given range (in this study between -1
and +1).

Replacement set of X values to investigate further opti-
mization of the trajectory:

Xupdate ¼ �1 : 0:1 : þ1f g ¼ �1;�0:9;�0:8 � � � ;þ1f �g ð6Þ

We propose to create a set of 150 trajectories, each with k
X values (k=9 in this work), randomly selected from the
range with values between -1 and +1 (Eq. (5)) taking into
ptimization for CBCT metal artifact reduction based on PICCS reconstruction, Z Med Phys,
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account the possible range of the device movement and
available kinematic constraints. The DRRs associated with
these trajectories are simulated on the CBCT-based digital
phantom. Image reconstruction is then performed for the
entire set of trajectories, the objective function in VOI is cal-
culated, and the trajectory with the best value is selected. In a
second optimization step, we then search for a possible
improvement of the selected trajectory by sequentially opti-
mizing the X values. We start with the first X value from the
initial X set (Eq. (5)) of the selected trajectory and replace
this value with all values from the set of updated X values
(Xupdate, Eq. (6)). If by replacing any of values from the
updated X set (Eq. (6)) an increase in the objective function
is detected, that new X value from Eq. (6) is replaced by the
first initial value in Eq. (5). This procedure is repeated for
other X values from the initial set until an increase in the
objective function is found. Once there is no more improve-
ment in the objective function, the k updated X values are
returned for the final optimal trajectory. The optimization
steps are summarized in Method 2.

Method 2: Trajectory optimization
Input: Search space, possible projections
Step 1: Define a set of possible arbitrary trajectories with
k random X values (values are set randomly a number
between -1 to +1, Eq. (5))
Step 2: Simulate projections for all defined trajectories on
the prior CBCT digital phantom
Step 3: FOR 1: number of trajectories

� Reconstruct the image using the set of DRRs
related to the corresponding trajectory

� Crop the reconstructed image at the VOI
� Calculate the objective function at the cropped

area

ENDFOR
Step 4: Find the trajectory with maximum score
Step 5: WHILE new X value increases the objective
function score
Step 6: FOR 1: number of initial X (k)

� Check whether replacement of any new X value
from the range (-1: 0.1 :+1) (Eq. (6)) with the ini-
tial omega value (Eq. (5)) increases the objective
function, if yes replace that with the initial X value

END
END
Step 7: Return selected trajectory (optimized trajectory)
2.5.3 Method 3
We used the same optimization method as in [19], in

which the authors proposed to use a VOI from an existing
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diagnostic CT scan and simulated a wide variety of possible
trajectory combinations from short arcs on this prior CT,
taking into account kinematic constraints in the operating
room. In this method two types of rotations (rotation toward
RAO/LAO direction while having a tilt at various fixed
CRA/CAU angles and rotation toward CRA/CAU direction
while having a tilt at various fixed RAO/LAO angles) were
implemented. Each of the resulting rotation is divided into a
certain number of short arcs (in this study two short arcs)
and the final trajectory consists of combination of two of
such arcs. Through an optimization process, possible arcs
are selected, reconstructed with iterative algorithms, and
quantitatively evaluated to find the combination of short arcs
that best fits the selected objective function. This process is
repeated for optimization. In detail, first, a VOI is selected
where the image quality is to be optimized. Then, synthetic
projections are simulated using the CT-based digital phan-
tom for all defined short arcs. An image reconstruction step
is then run for the entire set of possible short arcs and an
objective function (image quality metric) is evaluated in
the VOI selecting the arc with best value. The selected short
arc is removed from the search list, appended to all other
available arcs in the search space, and the algorithm is rerun
as many times as required. The main goal of trajectory opti-
mization in this study was to enable CBCT imaging in sce-
narios with kinematic constraints (e.g., originating from
other medical devices or patient table) where a standard cir-
cular trajectory is not feasible. In this work, a similar
approach to Method 1 (Section 2.5.1) has been proposed,
with the difference that short sinusoids are combined instead
of short arcs to create the final optimized trajectory.
2.5.4 Method 4
We also used the same optimization approach as in [22]. In

[22] the authors proposed a function whose maximum identi-
fies the next best projection view based on task detectability.
The detectability index of the non-prewithening matched fil-
ter observer (NPWMF) observer for a specific task, which can
be written in the Fourier-domain, was used to assess the can-
didate trajectory. For the optimization process, the authors
tried to find the best projection views using a sequential opti-
mization method. They found high performing sets of projec-
tion views using a greedy method where new angles were
added to a growing set of projection angles that started with
an empty set. Therefore, a set of projection angles is com-
posed by iteratively finding the next most valuable projection
in the detectability map and adding it to the existing set of
projection angle pairs. In this study, we used the same greedy
optimization process as introduced in [22], however, SSIM
value was used to evaluate the performance of the trajectories
in the simulation phase.
ptimization for CBCT metal artifact reduction based on PICCS reconstruction, Z Med Phys,
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2.6 Computational time

We modified the implementation of PICCS in the Tomo-
graphic Iterative GPU-based Reconstruction (TIGRE) tool-
box [29] to run the reconstruction fully on the GPU. This
implementation takes approximately 1.50 second and 2.35
seconds for each PICCS reconstruction (with five iterations),
including 20 and 40 projections, respectively, using a com-
puter with an NVIDIA GeForce RTX 2080 and a 32-core
Advanced Micro Devices (AMD) processor.
2.7 Experimental methods

This section describes the experimental tools used for the
validation of our method. First, chest phantoms are described
(Section 2.7.1), then the image quality metrics to evaluate
the results (Section 2.7.2) and finally a description of the
experimental setup is given (Section 2.7.3).

2.7.1 Phantoms
Two 3D printed (PolyJet) objects serving as tumor (tar-

get 1 and 2) were placed inside two different regions of
the thorax phantoms and were considered as the imaging
targets to be optimally reconstructed. We evaluated the per-
formance of reconstruction at these two imaging targets
using an in-house built anthropomorphic thorax phantom
developed previously by our group [30]. The thorax phan-
tom including the biopsy needle and one tumor, and a CT
from the phantom with the two imaging target regions is
shown in Fig. 2.

2.7.2 Image quality metrics
SSIM and universal quality index (UQI) were used as the

image quality metrics in order to evaluate the performance of
the reconstructed images using different trajectories based on
real projection data. The values of these two metrics were
computed between the VOI from the reconstruction image
from the optimized trajectories and the reference image
(ground truth) was defined as the prior CBCT image with
the digitally inserted needle (Section 2.1).

2.7.3 Physical experiments
We realized the selected optimized trajectories achieved

from the trajectory optimization phase (Section 2.5) with a
step-and-shoot protocol on the imaging device by position-
ing the C-arm at each projection angle. The reconstruction
results from the optimized trajectories based on real projec-
tions (including 20 projections) using the PICCS reconstruc-
tion were compared with the standard circular trajectory of
the C-arm (313 projections over a rotation of 210�) using
the Feldkamp, Davis, and Kress (FDK) reconstruction algo-
rithm, which is widely used commercially. In addition, the
results of the optimized trajectories using the PICCS method
were compared to a sparse-view circular trajectory using the
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FDK method including same number of projections as for
the optimized trajectories (20 projections). For further anal-
ysis, we also performed a comparison with CBCT images
reconstructed with the PICCS algorithm but from a sparse-
view circular trajectory including 20 projections. This com-
parison was performed to investigate whether an improve-
ment in reconstruction results could be achieved when
using optimized sparse-view 3D projections compared to
the circular sparse-view circular projections when using
the PICCS as the reconstruction method. In addition, a com-
parison of the results with ASD-POCS method using 20 pro-
jections was also performed. The ASD-POCS method was
chosen for comparison because it has been shown to be very
efficient in reconstructing images in cases with limited pro-
jection views [19,20,31].
3 Experimental results

In this section, the experimental results of the different
trajectory optimization methods are explained. Section 3.1
presents the obtained optimized trajectories and the corre-
sponding 3D visualization. Section 3.2 describes the recon-
struction results and the corresponding quantitative results
using two image quality metrics.

3.1 Trajectory optimization results

The 3D visualizations of the optimized trajectories of all
4 optimization methods (Section 2.5) for the two image tar-
gets are shown in Figs. 3 and 4. In all cases, the optimized
trajectories did not include the forbidden area (yellow rectan-
gle in Figs. 3 and 4). For target 2, the two selected short arcs
have the same angular tilt, which is why they appear as one
continuous long arc in Fig. 4.

3.2 Physical experiment results

The reconstruction results of the standard circular trajec-
tory with FDK algorithm and 313 projections, the sparse-
view circular trajectory with FDK algorithm and 20 projec-
tions, the sparse-view circular trajectory with ASD-POCS
algorithm and 20 projections, the sparse-view circular tra-
jectory with PICCS algorithm and 20 projections, the opti-
mized trajectories based on PICCS algorithm, 20
projections and methods 1-4 for target 1 and target 2 are
shown in Figs. 5 and 6. In addition, the ground truth images
(prior CBCT with digitally inserted needle) are provided for
both targets to facilitate visual assessment and comparison
of performance of the reconstructed images. For target 1
and target 2, all images reconstructed with the PICCS algo-
rithm showed significantly better visualization of the tumor
and needle than images reconstructed with the circular tra-
jectory using FDK methods (both using 313 and 20 projec-
ptimization for CBCT metal artifact reduction based on PICCS reconstruction, Z Med Phys,
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Figure 2. The in-house developed thorax phantom including a biopsy needle pushed through the chest into the target on the left side and
one printed tumor model from two views (upper row), a CT from the phantom with the imaging target (middle row) and imaging target 2
(lower row).
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tions) and with the ASD-POCS method (20 projections).
The calculated SSIM and UQI values also confirmed the
visual inspection results, as both image quality metrics
showed higher values for images reconstructed with the
PICCS algorithm (20 projections) compared to images
reconstructed with ASD-POCS and the FDK algorithm,
even when 313 projections were used using FDK method
(Table 1).
Please cite this article as: S. Hatamikia, A. Biguri, G. Kronreif et al., Source-detector trajectory o
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For target 1, the highest values of SSIM and UQI for
images from PICCS algorithm were achieved 0.7301,
0.7080 and 0.7521, 0.7308 and 0.7109, 0.7301 when using
optimization methods 2, 3 and 4, respectively. In addition,
for target 2, the highest values of the same image quality
metrics using PICCS algorithm were obtained 0.7121,
0.6544 and 0.7308, 0.7248 and 0.7217, 0.6864 when using
optimization methods 2, 3 and 4, respectively.
ptimization for CBCT metal artifact reduction based on PICCS reconstruction, Z Med Phys,
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Figure 3. Three-dimensional visualization of the circular trajectory and optimized trajectories (Methods 1-4) for imaging target 1. The
yellow rectangle represents the forbidden area.

Figure 4. Three-dimensional visualization of the circular trajectory and optimized trajectories (Methods 1-4) for imaging target 2. The
yellow rectangle represents the forbidden area.
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For both imaging targets, reconstructed images based on
PICCS algorithm and optimization Method 3 achieved the
highest value for both image quality indexes among different
Please cite this article as: S. Hatamikia, A. Biguri, G. Kronreif et al., Source-detector trajectory o
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optimization methods. When comparing the results from
sparse-view circular trajectory and sparse-view optimized
trajectory both using PICCS algorithm and the same
ptimization for CBCT metal artifact reduction based on PICCS reconstruction, Z Med Phys,
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Figure 5. Reference image for target 1, reconstruction results for the imaging target 1 related to standard circular trajectory with FDK
algorithm and 313 projections, the sparse-view circular trajectory with FDK algorithm and 20 projections, the sparse-view circular
trajectory with ASD-POCS algorithm and 20 projections, the sparse-view circular trajectory with PICCS algorithm and 20 projections, the
optimized trajectories based on PICCS algorithm, 20 projections and methods 1-4. The display window shows linear attenuation coefficient
and is set to the gray value range [0–10].
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Figure 6. Reference image for target 2, reconstruction results for the imaging target 2 related to (a) standard circular trajectory with FDK
algorithm and 313 projections, the sparse-view circular trajectory with FDK algorithm and 20 projections, the sparse-view circular
trajectory with ASD-POCS algorithm and 20 projections, the sparse-view circular trajectory with PICCS algorithm and 20 projections, the
optimized trajectories based on PICCS algorithm, 20 projections and methods 1-4. The display window shows linear attenuation coefficient
and is set to the gray value range [0–10].
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projection number (20 projections), we observed that for
most of images using the trajectory optimization methods,
a higher accuracy was achieved compared to the sparse-
Please cite this article as: S. Hatamikia, A. Biguri, G. Kronreif et al., Source-detector trajectory o
https://doi.org/10.1016/j.zemedi.2023.02.001
view circular trajectory using PICCS method. The total com-
putational time for optimization methods 1, 2, 3, and 4 was
8.98, 7.79, 3.56 and 11.65 minutes respectively. In addition,
ptimization for CBCT metal artifact reduction based on PICCS reconstruction, Z Med Phys,
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Table 1
The values related to the structural similarity index measure (SSIM) and universal quality index (UQI) metrics between the reconstructed
image from different trajectories and the reference CBCT for imaging target 1 and target 2.

Trajectory Image quality metric type Image quality metric value
Target 1

Image quality metric value
Target 2

FDK circular
313 projections

SSIM 0.5610 0.5189
UQI 0.6054 0.4603

FDK circular
20 projections

SSIM 0.3580 0.2819
UQI 0.3925 0.2323

ASD-POCS circular
20 projections

SSIM 0.5510 0.6035
UQI 0.6236 0.5448

PICCS circular
20 projections

SSIM 0.7049 0.6860
UQI 0.6752 0.6263

PICCS method 1
20 projections

SSIM 0.6515 0.7121
UQI 0.6927 0.6544

PICCS method 2
20 projections

SSIM 0.7301 0.6538
UQI 0.7080 0.6307

PICCS method 3
20 projections

SSIM 0.7521 0.7308
UQI 0.7308 0.7248

PICCS method 4
20 projections

SSIM 0.7109 0.7217
UQI 0.7301 0.6864

Figure 7. Some examples of simulated projections compared to real projections as well as a plot of the data residual (simulated versus
measured projections) related to the optimized trajectory for target 2 using PICCS reconstruction and optimization method 1.
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Fig. 7 shows some examples of simulated projections com-
pared to real projections and a plot of residual data (simula-
tion versus measured projections) related to the optimized
trajectory for target 2 using PICCS reconstruction and opti-
mization Method 1. Furthermore, Fig. 8 shows the simulated
Please cite this article as: S. Hatamikia, A. Biguri, G. Kronreif et al., Source-detector trajectory o
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image compared to the real image for the same case (target 2
using PICCS reconstruction and optimization Method 1). A
good agreement can be seen between the simulated projec-
tions and the real projections, and between the simulated
image and the real reconstructed image.
ptimization for CBCT metal artifact reduction based on PICCS reconstruction, Z Med Phys,
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Figure 8. An example of a simulated image compared to the corresponding real image for optimized trajectory related to target 2 using
PICCS reconstruction and optimization method 1.
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4 Discussion

In this study, we proposed a framework for customized
trajectory design in CBCT imaging with the goal of metal
artifact reduction. The performance of sparse-view PICCS
algorithm with optimized 3D trajectories was investigated
for metal artifact reduction in needle-based interventions.
We proposed to optimize out-of-plane rotations in 3D space
and minimize projection views while reducing the metal arti-
facts at particular VOIs. In addition, the performance of the
proposed method was evaluated for CBCT imaging under
kinematic constraints when standard circular trajectories
are not feasible. Our results based on two imaging targets
inside an anthropomorphic thorax phantom with a biopsy
needle inserted into a target, demonstrated that sparse-view
optimized trajectories (20 projections) using PICCS algo-
rithm achieved a significant higher image quality with
respect to the reference C-arm circular trajectory using
FDK method when using both 20 and even 313 projections.
In addition, the results showed that the sparse-view opti-
mized trajectories (20 projections, using PICCS algorithm)
achieved a higher performance for most of the trajectory
optimization methods as compared to the sparse-view circu-
lar trajectory reconstructed with PICCS (20 projections).
This comparison confirms that trajectories including optimal
3D projection views can outperform the trajectories with
standard-circular projections, highlighting the superiority
of optimal 3D views over standard circular projection views
in reducing metal artifacts.

Based on our knowledge, this is the first study which
demonstrates the performance of metal artifact reduction
Please cite this article as: S. Hatamikia, A. Biguri, G. Kronreif et al., Source-detector trajectory o
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using trajectory optimization for needle-based procedures.
In addition, the use of PICCS to reduce metal artifacts in
CBCT images is being investigated for the first time. The
lower number of projections used makes our optimized tra-
jectories suitable for low-dose CBCT interventions. Further-
more, considering that the proposed optimized trajectory is
adaptable to spatially constrained situations and can enable
CBCT under kinematic constraints, the achieved perfor-
mance is very significant. We found that almost in all cases,
all optimization methods improved the image performance
compared to the standard circular trajectories. However,
the trajectory optimization Method 3 showed the best perfor-
mance among the 4 different optimization methods investi-
gated in this study for both target 1 and target 2. The
reason could be that this method is less constrained com-
pared to other methods if good starting arcs are defined.
Considering that this method provides a simple approach
for trajectory optimization by combining the two best possi-
ble short arcs while achieving high performance in metal
artifact reduction, it can be considered as a good candidate
for future clinical implementation. In addition, using the
same trajectory optimization method as in the previous study
(Method 3) [19], we obtained a slightly higher UQI value
(0.731 for target 1 and 0.725 for target 2) compared to the
previous study, in which the authors reported a UQI of
0.703 for an anatomical phantom (without metal object)
[19]. Furthermore, compared to the results of previous study
[19], the proposed Methods 1 and 2 achieved comparable
UQI values (0.693 and 0.708 for target 1, respectively),
while we achieved a slightly higher UQI value (0.730) for
target 1 using optimization Method 4 (greedy approach)
ptimization for CBCT metal artifact reduction based on PICCS reconstruction, Z Med Phys,
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from [22]. The UQI values were also comparable using
Method 3 and Method 4 for target 1 (0.731 and 0.730,
respectively). Direct comparison of the image quality metric
from trajectory optimization Methods 1, 2 and 3 with the
results reported in the study [22, Method 4] was not possible
because of the different image quality metric used to report
the results.

An important aspect of the clinical implementation of this
approach is the consideration of possible movements of the
target object that may occur during the scans in a clinical
scenario. To incorporate this effect, we suggest considering
a margin around the tumor (in the range of a few centime-
ters) as the VOI, assuring the region of interest to include
the imaging target. In addition, a registration step will be
required to have a practical workflow. This can be done
using some initial projections and a two-dimensional
2D/3D registration to match the new position with the initial
position (so that the needle has the same orientation as in the
simulations) and adjust the trajectory accordingly on the fly.
However, the effects of extended VOI and the inclusion of
2D/3D registration in the optimization process require fur-
ther investigation and were not the focus of the current
study. In this study, we realized the optimized trajectories
using a step-and-shoot protocol by positioning the C-arm
to each projection separately. This approach assumed a pre-
cise positioning of the source and detector. In a real clinical
scenario, the motion of the C-arm gantry while positioning
to new angles can lead to gantry wobble and therefore, a pre-
cise geometric calibration such as proposed in [32,33]
should be considered for future implementation of this
approach.

Our study mainly focuses on interventional procedures,
especially percutaneous procedures such as needle biopsies,
where a needle is usually the metal object. Applications such
as pedicle screw insertion (e.g., in spine surgery), where
multiple metal objects are commonly used, can also be con-
sidered as other important clinical scenarios that may benefit
from the methods proposed in this study. Therefore, a future
point of this research is to investigate the performance of the
current methods for other types of procedures, such as screw
placement with multiple metal objects. In this study, the exe-
cution time of different methods of trajectory optimization
was between 3 and 11 minutes. We already have a fast opti-
mization setup, but further improvements can be achieved by
using multiple GPUs or other parallelization techniques.
Therefore, it is realistic to expect that an adaptive and intra-
operative trajectory optimization can be set up in a few min-
utes. This higher speed also opens the possibility to extend
the search space to include a larger number of trajectories
and other trajectory shapes, and to use advanced heuristic
optimization techniques suitable for the trajectory optimiza-
tion process.
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5 Conclusion

We have shown that reduction of metal artifacts in
needle-based procedures in CBCT imaging is possible using
PICCS reconstruction and by optimizing out-of-plane rota-
tions in 3D space while avoiding kinematic constraints.
Our approach uses only 20 projections to reconstruct the
image. This small number of projections not only signifi-
cantly reduces metal artifacts, but can also contribute to a
significant dose reduction in needle based CBCT
interventions.
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