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Abstract Non-circular acquisition orbits for cone-beam CT (CBCT)
have been investigated for a number of reasons including increased
field-of-view, minimal interference within an intraoperative environ-
ment, and improved CBCT image quality. Fast reconstruction of the
projection data is essential in an interventional imaging setting. While
model-based iterative reconstruction can reconstruct data from arbi-
trary geometries and provide superior noise suppression for a wide
variety of non-circular acquisitions, such processing is particularly
computationally intensive. In this work, we present a scheme for fast
reconstruction of arbitrary non-circular orbits based on Convolutional
Neural Networks (CNNs). Specifically, we propose a processing chain
that includes a shift-invariant deconvolution of backprojected measure-
ments, followed by CNN processing in a U-Net architecture to address
artifacts and deficiencies in the deconvolution process. Synthetic train-
ing data is produced using orbital specifications and projections of a
large number of procedurally generated objects. Specifically, attenua-
tion volumes are created via randomly placed Delaunay tetrahedrons.
We investigated the reconstruction performance for different sets of
acquisition orbits including: circular, sinusoidal and randomized para-
metric trajectories. Our reconstruction scheme yields similar image
quality when compared to simultaneous algebraic reconstruction tech-
nique (SART) reconstructions, at a small fraction of the computation
time. Thus, the proposed work offers a potential way to utilize sophisti-
cated non-circular orbits while maintaining the strict time requirements
found in interventional imaging.

1 Introduction
The advent of robotic interventional x-ray systems has
opened the door to dramatically increased flexibility in the
design of CBCT acquisition trajectories. Such orbits have
been used to increase the imaging field-of-view and to mini-
mally interfere with the other equipment in the interventional
suite; but also to improve image quality. For example, a
large variety of non-circular orbits has been investigated to
improve data completeness, metal artifacts, and task-based
detectability [1, 2, 3, 4]. Typically, reconstruction algorithms
for non-circular data have relied on both analytical and model-
based methods. Analytical solutions exist for specific classes
of non-circular orbits such as saddle trajectories [5]. Model-
based iterative reconstruction (MBIR) implicitly handles ar-
bitrary geometries (providing a “best” estimate based on the
available data). These algorithms, however, are computation-
ally expensive, which poses a major limitation particularly
for interventional applications. The recent proliferation of
data-driven and machine-learning-based reconstruction meth-
ods provides opportunities for superior reconstruction speed
and image quality comparable to MBIR.
In this work, we propose a reconstruction scheme that lever-
ages Convolutional Neural Networks (CNNs). In particular,
we develop a processing chain where data backprojection
is followed by a shift-invariant deconvolution step followed
by CNN processing. The deconvolution is based on the or-

bital trajectory and the intrinsic system response but is only
approximate. The CNN step is trained to mitigate deficien-
cies in this approximate deconvolution. Each of these steps
is computationally efficient and non-iterative leading to a
fast processing chain. The following sections detail this
processing chain and its application to five different sets of
orbit geometries. For comparison, an iterative reconstruction
scheme, the simultaneous algebraic reconstruction technique
(SART), is also applied and quantitative performance mea-
sures (relative to truth) are computed.

2 Materials and Methods
2.1 The Tomographic Reconstruction Problem
Presuming log-transformed projection data, tomographic re-
construction seeks to solve the following inverse problem:

y = A(Ω)µ, (1)

where y denote the measured line integrals of attenuation
(e.g., projections) and µ is the distribution of attenuation
values in the object. Here, we identify the dependence of
the projection matrix, A, on some parameterization of the
acquisition orbit Ω. Classic inversion approaches often seek
to find the pseudo-inverse:

µ = (AT A)−1AT y. (2)

The pseudo-inverse has the advantage that solutions can be
found for non-square and rank-deficient A that are possible
for arbitrary trajectories.
We note that AT represents a backprojection operation. Thus,
the operator (AT A)−1 represents a kind of generalized filter-
ing operation. In fact, under idealized imaging conditions
(parallel beam, sufficient sampling, etc.) and a circular acqui-
sition geometry, (AT A) represents the operator that applies
the well-known intrinsic response of tomography - a 1/r blur
function. Thus, in the ideal case, (AT A)−1 is the inverse
filter that removes 1/r blur. For non-circular orbits, diver-
gent beams, etc., the blur induced by (AT A) is not generally
shift-invariant nor of the form 1/r. However, these observa-
tions suggest a potential scheme for fast reconstruction using
similar processing stages.

2.2 Proposed Reconstruction Pipeline
Motivated by the above observations, we propose a new
reconstruction pipeline using neural networks but leveraging
what we already know about the required reconstruction
process. Specifically, we maintain the backprojection step
and address the operator (AT A)−1.
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Figure 1: Flow chart illustrating the proposed reconstruction pipeline. We first deconvolve an approximation of the system response then
deploy a CNN to remove residual artifacts.

Figure 2: U-Net in the last step of the propose pipeline. Numbers
over feature channel blocks indicate the number of channels. Max
pooling halves the size of each dimension, whereas transposed
convolution with stride two doubles the size of each dimension.

While one could develop a neural network to learn this inverse
transform, there is an opportunity to provide a better network
input. We will presume that the geometry, and hence A
and AT of non-circular acquisitions are known a priori. We
can therefore devise network inputs to leverage such prior
information. Specifically, if we can first deconvolve (in the
case of a shift-invariant system) the system response, AT A,
from the backprojection, AT y, we can effectively remove the
dependency on geometry in the reconstruction process. Of
course, such deconvolution procedure is noise amplifying and
prone to artifacts. We therefore deploy a post-deconvolution
CNN to remove residual artifacts.
Towards this end, we developed a processing chain illustrated
in Fig.1. For initial investigation in this work, we assumed
the system response to be approximately shift-invariant (true
for small objects and/or long geometries) and approximated
the system response as AT Ae j where e j denotes an impulse
at the center of the image. We first deconvolved AT Ae j from
AT y via direct Fourier inversion, i.e.:

F−1

{
F
{

AT y
}

bF
{

AT Ae j
}
c

}
. (3)

We adopted several techniques to mitigate artifacts associ-
ated with the deconvolution process. First, a threshold oper-

ator was used in the denominator to avoid division by zero.
(Specifically, a value of 0.0025 was applied.) Second, the
backprojection volume was expanded to approximately four
times the reconstruction volume to mitigate spurious frequen-
cies as a result of the fast Fourier transform of signals with
discontinuities at the boundaries. Third, to mitigate artifacts
in F

{
AT Ae j

}
due to the combined effect of voxel sampling

and ray-based projector, we computed AT Ae j at eight voxel
locations around the central voxel of the image and averaged
the responses.
After the deconvolution, we additionally corrected for sam-
pling density by performing an element-wise division of the
volume by AT A1, where 1 denotes a volume of 1s. We trun-
cated the image to the same size as the reconstruction image
volume to save memory. The resulting image volume was
used as input to the CNN. In summary, the input to the CNN
is represented mathematically as:
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1
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. (4)

For the CNN processing step, we chose a U-Net architecture
consisting of seven convolutional blocks illustrated in Figure
2. The U-net architecture was chosen due to its successful
application in image deconvolution and CT reconstruction.
The input of the network detailed above consists of
128x128x128 voxel volumes. The network is trained to pre-
dict the ground truth phantom images of the same size. For
training, the root-mean-square error (RMSE) between the
prediction and the ground truth image was chosen as the
loss function. Optimization was performed using an Adam
optimizer with a learning rate of 0.001 and terminated after
100 training epochs. Among the 1000 phantom images, 800
images were used for training, 100 for validation, and 100
for testing. Details of the training and evaluation data follow.

2.3 Phantom and Data Generation
For imaging phantoms used in training and evaluation, we
procedurally generated 1000 random realizations of Delau-
nay tetrahedrons. We randomly sampled 40 vertex locations
in 3D, then created a tetrahedron mesh by connecting these
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vertices using the 3D Delaunay triangulation algorithm in
MATLAB. Within each tetrahedron, a uniform attenuation
coefficient was randomly assigned based on the distribution
of voxel values in an abdomen CT scan (sans background).
The phantoms were then formed by voxelizing the meshes on
a 128x128x128 grid with 0.5x0.5x0.5 mm3 voxel spacing.
Data were simulated using the ASTRA toolbox [6, 7]. The
imaging geometry used a source-axis distance and source-
detector distance of 1 m and 0.5 m, respectively. The re-
construction volume matched the voxel size and spacing
of the ground truth. The projection data were simulated
on a 256x256 detector with pixel size 0.75mm x 0.75mm.
The detector size was large enough to avoid data truncation.
Noiseless projection data were simulated.

2.4 Experimental Design
We exercised the proposed reconstruction pipeline on five
different sets of acquisition geometries. For each geometry,
512 rotation angles, θ , are evenly distributed between 0° and
360°. The elevation angles, φ , are parameterized as sinu-
soidal functions of θ at varying frequencies. The amplitude
has been set to 25° for all cases (except the circular geome-
try). Four networks were trained on data of only one orbit,
while one network was trained on data with two different
geometries in a common pool. This was done to investigate
if our proposed approach is able to reconstruct data of more
than one geometry.
The five acquisition geometries are as follows:

• circular, φ = 0 for all θ

• φ = sin(2θ ),
• φ = sin(3θ ),
• φ = sin(2θ ) and φ = sin(3θ ),
• one linear combination of sinusoidal basis functions

with randomly generated coefficients.

2.5 Evaluation Metrics
Reconstruction performance was evaluated in terms of the
the normalized RMSE (nRMSE), the feature similarity index
(FSIM) and the structural similarity index (SSIM) between
the network output and the ground truth phantom images. To
compare the proposed reconstruction pipeline with state-of-
the-art algorithms, we additionally performed reconstructions
using 50 iterations of the SART algorithm (using the GPU-
based TIGRE toolkit for arbitrary trajectories [8, 9]).

3 Results

Intermediate images and final reconstruction outputs from the
proposed reconstruction pipeline are illustrated in Figure 3.
Note the residual artifacts in the deconvolved volumes. The
calculated evaluation metrics are compared in Table 1. The
CNN-based approach consistently outperforms the SART
reconstructions in terms of nRMSE and FSIM. This is also
the case for SSIM except for the network trained on two si-
nusoidal geometries. While SART performs comparably for
all geometries with only slight deviations, the performance
of the CNNs show noticeable differences for the different ge-
ometries. Specifically, reconstruction performance decreases

with increasing orbital complexity (possibly due to increased
shift-variance). This is apparent in the slightly decreasing
evaluation metrics as well as in the magnified areas and the
difference images in Figure 3. The magnified region in partic-
ular contains fine-grain details, which every CNN struggles
to reconstruct accurately.
The majority of the computation time for the proposed
method is spent on the calculation of the impulse response (5
minutes), the ray density (30 seconds), and ultimately for the
deconvolution operation (20 seconds). The CNN prediction
takes around 1 second. In comparison, SART reconstructions
take approximately 50 minutes for 50 iterations on a work-
station with comparable specifications. Aside from the CNN,
the mentioned implementations have not been optimized for
runtime.

4 Discussion and Conclusion

In this work, we proposed a novel pipeline for fast reconstruc-
tion of non-circular geometries. The pipeline consists of an
initial deconvolution step to remove an approximation of the
system response followed by an artifact removal step using a
CNN. We tested the pipeline in five sets of imaging geome-
tries of single and mixed sinusoidal orbits. Our proposed
method offers ∼ 90% reduction in computation time and is
comparable or superior to SART in terms of the nRMSE,
FSIM, and SSIM. These results suggest that the pipeline of-
fers a promising approach to reconstruct data acquired with
non-circular orbits when time is of the essence.
This work has several limitations that are being addressed
in ongoing work. First, the pipeline was only trained and
assessed on piecewise-constant phantoms. Extending the
reservoir of phantoms to include non-piecewise-constant
phantoms will help to improve the generalizability of the
proposed approach. Second, the case where two sinusoidal
orbits were trained simultaneously illustrates some capacity
of the method to accommodate multiple geometries within
the same class. We plan to extend the reconstruction capa-
bility of the method to arbitrary orbits within classes (e.g.,
sinusoids).
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Figure 3: Intermediate image volumes and final reconstruction outputs from the reconstruction pipeline. Each column corresponds to a
set of imaging geometries. Rows from top to bottom: elevation angle φ as a function of rotation angles θ ; backprojected volume; volume
after deconvolution; CNN reconstruction (axial slice); zoomed in ROI within the slice; difference image between the reconstructions and
ground truth phantom images.

circular sin(2θ ) sin(3θ ) sin(2θ )&sin(3θ ) random

Pr
op

os
ed nRMSE ↓ 0.033±0.005 0.048±0.007 0.060±0.008 0.062±0.007 0.061±0.009

FSIM ↑ 0.991±0.005 0.983±0.010 0.979±0.010 0.977±0.013 0.979±0.013
SSIM ↑ 0.994±0.002 0.987±0.004 0.984±0.003 0.944±0.013 0.985±0.007

SA
R

T nRMSE ↓ 0.116±0.013 0.105±0.016 0.109±0.015 0.107±0.016 0.108±0.015
FSIM ↑ 0.937±0.019 0.943±0.015 0.940±0.015 0.942±0.015 0.941±0.015
SSIM ↑ 0.941±0.011 0.963±0.011 0.956±0.011 0.960±0.011 0.958±0.010

Table 1: Evaluation metrics for the propose pipeline compared with SART. All metrics were evaluated between the reconstructions and
ground truth phantom images. The better of two values is marked bold.

References

[1] Tang, X and Ning, R, Medical Physics, vol. 28, no. 6, pp. 1042–1055, 2001.

[2] Gang, G. J et al., International Conference on Image Formation in X-Ray
Computed Tomography, 2020.

[3] Stayman, J. W et al., Journal of Medical Imaging, vol. 6, no. 02, p. 1, 2019.

[4] Capostagno, S et al., Journal of Medical Imaging, vol. 6, no. 02, p. 1, 2019.

[5] Pack, J. D et al., IEEE Transactions on Medical Imaging, vol. 24, no. 1, pp.

70–85, 2005.

[6] Palenstijn, W. J et al., Journal of Structural Biology, vol. 176, no. 2, pp. 250–
253, 2011.

[7] van Aarle, W et al., Optics Express, vol. 24, no. 22, p. 25129, 2016.

[8] Biguri, A et al., Biomedical Physics and Engineering Express, vol. 2, no. 5,
2016.

[9] Hatamikia, S et al., Medical Physics, vol. 47, no. 10, pp. 4786–4799, 2020.


	Introduction
	Materials and Methods
	The Tomographic Reconstruction Problem
	Proposed Reconstruction Pipeline
	Phantom and Data Generation
	Experimental Design
	Evaluation Metrics

	Results
	Discussion and Conclusion

