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Abstract  

Kinematic constraints due to the additional medical equipment or patient 

size are common while acquiring C-arm cone beam computed 

tomography (CBCT). Such constraints cause collisions with the imager 

while performing a full circular rotation and therefore eliminate the 

chance for three dimensional (3D) imaging in CBCT-based 
interventions. In a previous paper, we proposed a framework to develop 

patient-specific collision-free trajectories for the scenarios where circular 

CBCT is not possible. However, the proposed method required kinematic 

constraints to be known beforehand. As collisions are mainly 

unpredictable in the operation theater, a framework which enables a real-

time trajectory optimization is of great clinical importance. In this study, 

we introduce a new search strategy which has the potential to optimize 

trajectories on-the-fly. We propose an optimization procedure which 

identifies trajectories with the highest information to reconstruct a 

Volume of Interest (VOI) by means of maximizing an objective function; 

then a local search is performed around the best selected initial candidates 

and better trajectory solutions are investigated among newly created 

neighbors. The experimental results based on two imaging targets inside 

an Alderson Rando phantom showed that proposed trajectories achieve 

image quality comparable to that of the reference circular CBCT while 

simulating strong kinematic constraints. The overall time required for the 
whole optimization process was around three to four minutes  using one 

GPU. 

1 Introduction 
Recently, cone beam computed tomography (CBCT) has 

become an important imaging modality in interventional 
radiology [1, 2]. One important feature of interventional 

radiology is that a prior knowledge of patient anatomy (e.g. 

high quality CT or pre-operative CBCT) is usually 

available. This gives the opportunity to incorporate such 

prior knowledge into image acquisition process by using a 
customized CBCT. Nowadays, robotic CBCT C-arms 

enable additional degrees of freedom and extend the 

scanning geometry possibilities beyond the standard 

circular source-detector trajectories.  Several studies have 

demonstrated an improvement in image quality and/or 

reduction the radiation dose using noncircular trajectories. 
In these studies, trajectory parameters were computed in the 

way to maximize the imaging performance of particular 

imaging tasks [3-5]. Gang et al. [3] proposed a target-based 

imaging acquisition framework for robotic C-arm CBCT 

systems using a gradient-based optimization of the tube 
current, reconstruction kernel and orbital tilt. Noncircular 

source-detector trajectories have been introduced using 

periodic and B-spline-based functions for simulation 

studies, as well as in neuroradiology applications to increase 

the image quality in a Volume of Interest (VOI) [4, 5].  
Recently, optimal sinusoidal trajectories were proposed in 

order to avoid the metal parts of the imaged object while 

still assuring a high coverage in Radon space and its vicinity 

[6]. All the aforementioned researches [3-6] were 

effectively applied to C-arm CBCT trajectory optimization. 
However, in all these studies, hard constraints on the 

rotation angle were applied for the trajectory design; thus, 

the employed trajectories did not take patient-specific 

collisions into account. Furthermore, all these studies [3-6] 

calculated the optimal trajectory parameters in a (semi) 

offline manner.  
In another study [7], patient-specific collision avoidance 

trajectories were proposed for linac-mounted CBCT 

devices using a virtual isocenter and variable magnification 

during data acquisition. Although their proposed 

trajectories could integrate case-specific collisions into the 
trajectory design, their method requires a high amount of 

computational time which hampers its usage for real-time 

trajectory optimization and therefore, it is not appropriate to 

react to unforeseen collisions which happen during 
interventions. To the best of our knowledge, the only study 
that introduced a real-time trajectory optimization was [8], 
in which the authors proposed optimizing the C-arm CBCT 

trajectories during the CBCT scan and performed the 

adjustments on-the-fly using a convolutional neural 

network and regressed an image quality measured over all 
possible next projections given the current X-ray image. 

However, the main focus of this research was metal artifact 

reduction and the trajectories introduced did not incorporate 

patient-specific collisions in their trajectory design. The 

research we present in this study is the first demonstration 

that proposes an on-the-fly trajectory optimization 
framework for customized CBCT acquisition that is able to 

react to scene-specific unforeseen collisions. 

Our group has recently published a method to optimize 

imaging quality for CBCT using semi-circular scan 

trajectories which can also be arranged out-of-plane [9, 10]. 
A VOI is selected using a prior CT scan and a variety of 

possible trajectory combinations from short arcs is 

simulated while taking kinematic constraints into account. 

The optimal arc combination is designated based on the 

image quality within the VOI. The time needed for 
designing a patient specific trajectory was in the range of 80 

minutes [9]. This required collisions and kinematic 

constraints to be known previously. As such constraints are 

mostly unpredictable in a clinical scenario, e.g. caused by 

additional medical devices or patient size (Fig.1), a real time 

trajectory optimization protocol is of great clinical 

importance even at the cost of losing a bit of image quality. 
        In the current study, we introduce a search strategy to 

overcome the aforementioned computational constraints.  
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Compared to our previous study [9], the major scientific 
novelty of this study lies on the introduction of the new 

search strategy that enables the on-the-fly feature for the 

trajectory optimization scheme; this finally brings a 

remarkably important clinical benefit for interventions 

where a 3D CBCT is otherwise not possible due to 

unforeseen collisions. 

 
Figure 1. Two examples of common kinematic constraints during interventions. 

Collision due to the patient size (a), and due to other medical devices (b) [11]. 

2 Materials and Methods 

2.A. Adaptation of workflow for the on-the-fly 

customized trajectory optimization 
In this study, we modified our previous work to enable a 

dynamic optimization in the operation room which can 

integrate kinematic constraints emerging during the 

interventions into the trajectory optimization design.  

We used the geometry of the Philips Allura FD20 Xper C-
arm in order to define a set of possible arcs. The C-arm is 

able to perform two different types of rotations: 1) rotation 

by angle θ1 towards the Right Anterior Oblique (RAO)/Left 

Anterior Oblique (LAO) direction while having a tilt ψ at 

various fixed Cranial (CRA)/Caudal (CAU) angles, 2) 
rotation by angle θ2 towards the CRA/CAU direction while 

having a tilt φ at various fixed RAO/LAO angles. Different 

subset of arcs (each arc included around 80 projections) 

were defined similar to that in the previous work [9] (Fig 2. 

a, b). We simulated kinematic constraints as two forbidden 

areas on the geometry of the C-arm (represented as yellow 
rectangles in Fig. 2 c, d). The arcs which had more than 10% 

of their angular range in the two forbidden area were 

removed and those that had less than 10% in these areas 

were cropped (Fig. 2 e, f) [9]. In order to accelerate the 

optimization process in the current work, the previous 
approach was modified by sparsifying the initial subset of 

arcs (Fig. 2 e, f) to include just arcs for every six degrees 

(Fig. 2 g, h); this led to a significant reduction in the 

computation time. However, a reduction of the initial subset 

of arcs may introduce an unfavorable bias in the path 
selection process. To address this issue, we propose to 

perform a heuristic local search around the arcs with the 

largest amount of information. First, we selected the three 

arcs with the best objective function values as the arcs with          

 highest amount of information. Then, we created new 

neighbor arcs for each of the three selected arcs and 

consequently, searched through such nearest neighbor arcs 

until an improvement in the objective function is observed. 

Finally, we selected the arc with the highest objective 
function value (Fig. 3). We repeated this procedure for the 

arc subsets RAO/LAO and CRA/CAU one after the other, 

with the previous best arcs were still being used, until a 

predefined number of arcs was designated as the final 

trajectory. We used the value of Feature SIMilarity Index 

(FSIM) as the objective function, as in our previous study. 
The pseudocode for this procedure is presented in 

Algorithm 1. 

2.B. Image reconstruction 

A modified version of the Tomographic Iterative GPU-
based Reconstruction (TIGRE) toolkit [12] for arbitrary 

trajectories was used [9], but the Adaptive Steepest Descent 

Projection Onto Convex Sets (ASD-POCS) reconstruction 

was limited to five iterations. For simulations, we sampled 

projections every four degrees, and therefore, 20, 40, and 60 
projections were simulated for trajectories that included 

one, two, and three arcs, respectively.  Projection number 

reduction was done only in simulations for a further 

acceleration of the process; however, for the real data, the 

full sampling projections were used for reconstruction. For 

projection simulations, we used a monoenergetic forward 
model with added Poisson noise. Bare-beam fluence was 

also modeled to approximate device exposure. 

 
Figure 2. A) RAO/LAO arcs with CRA/CAU obliques shown in the purple, green, 

and red colors, (b) CRA/CAU arcs with RAO/LAO obliques shown in the blue 
color, (c) and (d) spherical plot of arcs with two forbidden areas, (e) and (f) 

spherical plot of the arcs after removing those that intersected the forbidden area,  
(g) and (h) spherical plot of these remaining arcs after sparsification. Only these 

arcs were in the search space for trajectory optimization. (Kinematic constraints 
are simulated as forbidden areas are shown as yellow rectangles) [11].  

Figure 3. Illustration of the search strategy for optimizing the first best arc, (a) the 
three arcs with the highest objective function value are selected by searching 

through the RAO/LAO arc sparsely sampled initial subset (Fig. 2 g), (b-d) the 
nearby arcs are searched until the objective function decreased.  The sign (×) shows 

that the arc included more than 10% of its angular range in the forbidden area, and 

therefore, was rejected from the search space and FSIM was not calculated.  
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Algorithm 1. Trajectory optimization 

Input: Search space, number of desired arcs  

Step 1: Simulate projections for all defined arcs with the digital phantom 

Step 2: FOR 1: number of subsets 

Step 3: FOR 1: number of arcs in subset 

• Reconstruct the image using the set of projections related  

to the corresponding arc 

• Crop the reconstructed image at the VOI 

• Calculate the objective function at the cropped area 

END 

Step 4: Select best three arcs from Step3 

Step 5: WHILE expanded arcs increase objective function 

Step 6: FOR 1:number of arcs to expand 

• Create neighboring arcs at one degree each side 

• Evaluate objective function in newly created neighbors  

END 

END 

Step 7: Select best arc and prepend to search space 

 

2.B.1. Optimization of computational time 
The implementation of ASD-POCS in the TIGRE toolbox 

was modified to remove CPU-GPU transfer functions and 

to run the reconstruction fully on the GPU. Our 

implementation takes approximately 1.4, 2.2, and 3.05 

seconds for each ASD-POCS reconstruction (with five 

iterations), including 20, 40, and 60 projections using a 

computer with an NVIDIA GeForce RTX 2080 and a 32-

core Advanced Micro Devices (AMD) processor. 2563 

voxel volumes with 5122 projections were used for the 

reconstruction. The overall time required for the whole 

optimization process was around three to four minutes. The 

reported numbers in this study are using one GPU. 

3 Results 
In our experiments, two imaging targets in the thoracic 

spine (regions T3/T4 and T10/T11 for Target 1 and Target 

2, respectively) of an Alderson-Rando phantom were 

evaluated. In the simulations, we optimized trajectories 

including three arcs for both imaging targets. 3D 

visualizations of the optimized trajectories compared to 

standard circular trajectory are shown in Fig. 4 a and Fig. 4 

c for Target 1 and Target 2, respectively. The selected 

angular range and projection numbers related to optimized 

trajectories of both targets are shown in Table I. The (-) sign 

denotes rotation to the right/caudal directions and the (+) 

sign denotes rotation to the left/cranial. We implemented 

the optimal trajectories using a step-and-shoot protocol on 

C-arm to acquire real data. The reconstruction results were 

then compared to the C-arm circular trajectory (313 

projections, 210° angular range). Furthermore, they were 

also compared with respect to a reconstruction from a 

partial circular trajectory with an angular range and 

projections equivalent to the optimized trajectory. 

Reconstruction results using simulation data as well as real 

data for the optimized trajectories, standard C- arm circular, 

and partial circular trajectories for both targets are shown in 

Fig 5. The reconstruction results were evaluated by FSIM 

and Universal Quality Image (UQI). For both indexes, the 

image quality metric between the prior CT and C-arm 

circular CBCT was considered the reference value. The 

quality index value between the prior CT and 

optimized/partial circular trajectory was also calculated as 

the measured value. The relative deviation between the 

reference and measured values was used for the image 

quality evaluation. According to the results of Table III, the 

optimized trajectories delivered relative deviations up to 

9.47% and 4.06% in both image quality metrics for Target 

1 and Target 2, respectively. A relative deviation up to 

7.87% and 5.39% for Target 1 and Target 2, respectively, 

was also calculated for the reconstructed images related to 

partial circular trajectories. These results show a small 

decreased reconstruction performance (a slightly higher 

relative deviation) for Target 1, while a small increased 

image quality (a slightly lower relative deviation) for Target 

2 for both image quality metrics when using optimized 

trajectories compared to the partial circular trajectory. 

However, the differences observed are not significant and 

reconstructed images from optimized trajectories revealed a 

comparable image quality for both targets with regard to the 

partial circular trajectories. 

 
Figure 4. 3D visualization of the optimized trajectories (arcs shown in color) with 

respect to the C-arm circular trajectory (black dashed plot) and partial circular 

trajectory (black solid plot) for Target 1 (a, b) and Target 2 (c, d).   

 

Table 1. The angular range and projection number of the three selected arcs for 

the optimized trajectories related to Target 1 and Target 2 

Trajectory Arc Angle Projection 

number 

per arc 

Total 

number of 

projections 

 
Target 1 

 

Arc 1 θ1= -39:1:+39, ψ= -26 72  
228 Arc 2 θ2= -34:1:+40, φ= -60 75 

Arc 3 θ1= +44:1:+124,ψ=-6   81 

 
          

Target 2          

 

Arc 1 θ1= -22:1:+50, ψ= 10 73  

227 Arc 2 θ2= -40:1:+38, φ= -50 79 

Arc 3 θ1= +9:1:+83, ψ=+32 75 

 
Table 1. Relative deviations (%) of image quality measures FSIM and UQI for 

Target 1 and Target 2 using both optimized and partial circular trajectories 

Relative 
deviation 

(%) 

Trajectory Image 
quality 

metric 

Target 

9.47 Opt. FSIM    

Target 1 
 

7.87 Partial-circ. 

8.49 Opt. UQI 

4.83 Partial-circ. 

3.90 Opt. FSIM  

Target 2 5.39 Partial-circ. 

4.06 Opt. UQI 

5.38 Partial-circ. 



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine                    19 - 23 July 2021, Leuven, Belgium 
 

   
Figure 5. Reconstructions related to Target 1 (Left column) and Target 2 (Right 

column), (a) optimized trajectory based on simulation data, (b) optimized 

trajectory based on real data, (c) C-arm circular trajectory based on real data, and 

(d) partial circular trajectory based on real data. The display window has a range 

of 200-3000 HU for (a) and a range of 0-21 in gray values for (b-d), respectively. 

4 Discussion and Conclusion 
We proposed a framework for a patient-specific trajectory 

design for CBCT imaging which is suitable to react to 

unforeseen collisions. In fact, the major difference with the 

previous trajectory optimization approach [9] is that we 

now search for the optimal arcs within the most informative 

areas in 3D space to reconstruct the VOI (rather than 

searching among all plausible arcs as proposed in our 

previous study [9]), and consequently, we propose to 

perform a local search around the initially selected optimal 

arcs to find a better arc solution. Our results showed a slight 

decreased reconstruction performance for Target 1, while a 

small increase in image quality was seen for Target 2 using 

optimized trajectories compared to partial circular 

trajectories.   Considering the fact that our approach is the 

first proposed protocol in literature that can facilitate CBCT 

for interventions in which a 3D circular CBCT would not 

be otherwise possible due to unpredictable collisions, our 

results show acceptable performance even if there is a slight 

reduction in the image quality for some targets compared to 

the partial circular trajectory. In this study, we achieved a 

considerably higher speed in comparison to our previous 

work [9], which required approximately 80 minutes for 

reconstruction. Our proposed trajectory optimization 

framework requires three to four minutes overall time on 

one GPU and a further reduction in time to about one minute 

is anticipated by using multiple GPUs. Our framework has 

the potential to be done on-the-fly; therefore, it can be  

considered suitable for interventions with unexpected and 

arbitrary collisions. 
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